
- •1.Электрическая система. Элементы, структура, режимы работы. Показатели, определяющие режимы работы системы.
- •2. Основные понятия теории вероятности.
- •10. Законы распределения случайных величин.
- •11. Определение вероятности, подчиняющейся нормальному закону распределения.
- •13. Определение вероятности по закону Пуассона.
- •14.Определение вероятности, подчиняющейся биноминальному закону распределения.
- •15. Качественные определения основных показателей надежности.
- •17. Аналитическая взаимосвязь основных показателей надежности.
- •18. Расчетные формулы показателей надежности, их упрощение и область применения.
- •19. Полная и расчетная диаграммы состояния объекта расчета надежности.
- •20.Количественные показатели восстановления.
- •21. Расчетные формулы показателей восстановления.
- •22. Метод дифференциальных уравнений Колмогорова.
- •23. Логические схемы расчета надежности.
- •24.Типовые логические схемы расчета надежности.
- •25. Частные случаи типовых логических схем расчета надежности
- •26.Правило Рябинина.
- •27.Реальные соединения элементов при расчете надежности.
- •28.Системы случайных величин и их характеристики. Функция распределения и плотность распределения системы случайных величин.
- •29.Числовые характеристики системы 2-х случайных величин.
- •30.Общие сведения о случайных функциях и процессах.
- •32. Стационарные и нестационарные случайные функции.
- •37. Критерий согласия (Пирсона, Колмогорова, ĩ).
- •38.Регрессионный анализ результатов измерения.
- •Цели регрессионного анализа
- •Математическое определение регрессии
- •40.Нелинейная регрессия.
- •41.Задачи электроснабжения, требующие поиска оптимальных решений.
- •43.Модели, применяемые для решения оптимизационных задач.
- •44. Классификация методов оптимизации.
- •45. Методы линейного планирования.
- •48. Каноническая форма задачи линейного планирования.
- •51.Симплекс-таблица задачи линейного планирования.
- •55.Градиентный метод решения задачи нелинейного планирования.
- •Алгоритм
- •56.Метод динамического планирования. Область применения и содержание.
- •57.Рекурентное соотношение методов динамического планирования.
- •58.Принцип оптимальности Белмана на примере задачи.
Математическое определение регрессии
Строго регрессионную зависимость можно определить следующим образом. Пусть Y, X1,X2,...,Xp — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений X1 = x1,X2 = x2,...,Xp = xp определено условное математическое ожидание
y(x1,x2,...,xp) = E(Y | X1 = x1,X2 = x2,...,Xp = xp) (уравнение линейной регрессии в общем виде),
то функция y(x1,x2,...,xp) называется регрессией величины Y по величинам X1,X2,...,Xp, а ее график — линией регрессии Y по X1,X2,...,Xp, или уравнением регрессии.
Зависимость Y от X1,X2,...,Xp проявляется в изменении средних значений Y при изменении X1,X2,...,Xp. Хотя при каждом фиксированном наборе значений X1 = x1,X2 = x2,...,Xp = xp величина Y остается случайной величиной с определенным рассеянием.
Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение Y при изменении X1,X2,...,Xp, используется средняя величина дисперсии Y при разных наборах значений X1,X2,...,Xp (фактически речь идет о мере рассеяния зависимой переменной вокруг линии регрессии).
39. Линейная регрессия.
В регрессионном
анализе изучается связь и определяется
количественная зависимость между
зависимой переменной и одной или
несколькими независимыми переменными.
Пусть переменная Y
зависит от
одной переменной
.
При этом предполагается, что переменная
принимает
заданные фиксированные значения, а
зависимая переменна Y
имеет
случайный разброс из-за ошибок измерения,
влияния неучтенных факторов и т.д.
Каждому значению
соответствует
некоторый закон распределения
вероятностей случайной величины Y.
Предположим, что Y
в "среднем"
линейно зависит от значений переменной
.
Это означает, что условное математическое
ожидание случайной величины Y при
заданном значении
имеет
вид
.
Данная функция
называется линейной
теоретической функцией регрессии
Y
на
,
а параметры
и
–
параметрами
линейной регрессии (коэффициенты
регрессии). На практике параметры
регрессии определяются по результатам
наблюдений переменных Y
и
,
связь между которыми можно записать
,
где – случайная ошибка наблюдений.
Для задач электроэнергетики результат опыта характеризуется не одной, а несколькими случайными величинами, которые могут зависеть друг от друга. Степень стохастической зависимости численно характеризуется корреляционным моментом и коэфф. корреляции.
Если известны эти значения то линейную зависимость м/д случ-ми в-нами можно получить с помощью линейной регрессии.
y-my=(Kxy/Dx)(x-mx); x-mx=(Kxy/Dy)(y-my);
40.Нелинейная регрессия.
Нелинейная регрессия — частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.
Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины.
Термину регрессионная модель, используемому в регрессионном анализе, можно сопоставить синонимы: «теория», «гипотеза». Эти термины пришли из статистики, в частности из раздела «проверка статистических гипотез». Регрессионная модель есть прежде всего гипотеза, которая должна быть подвергнута статистической проверке, после чего она принимается или отвергается.
Регрессионная
модель —
это параметрическое семейство функций,
задающее отображение
где —
пространтсво параметров,
—
пространство свободных
переменных,
—
пространство зависимых
переменных.