Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
история энергетики.docx
Скачиваний:
13
Добавлен:
24.12.2018
Размер:
61.53 Кб
Скачать

1. Виды энергии и соответствующие им носители. Механическая - кинетическая энергия свободно движущихся тел и отдельных частиц. Электрическая - энергия электрического тока во всех его формах. Электромагнитная - энергия движения фотонов электромагнитного поля. Химическая – энергия системы из двух или более реагирующих между собой веществ. Эта энергия высвобождается в результате перестройки электронных оболочек атомов и молекул при химических реакциях. Ядерная энергия связи нейтронов и протонов в ядре, освобождающаяся в различных видах при делении тяжелых и синтезе легких ядер; в последнем случае ее называют термоядерной. Тепловая - часть энергии теплового движения частиц тел, которая освобождается при наличии разности температур между данным телом и телами окружающей среды.

2. Преобразование одного вида энергии в другой в естественных условиях и в искусственной среде обитания людей. Непосредственное использование природных источников энергии . Преобразование с использованием паровой машины Преобразование с использованием электроэнергии

3. Современное определение энергетики, энергетической техники, энергоресурсов.

Энергетикаэто область народного хозяйства, охватывающая энергетические ресурсы, выработку, преобразование, передачу и использование различных видов энергии.

Энергетическая техника — это область техники, направленная на получение энергии от природных источников, ее целесообразное преобразование, транспортировку и доведение до потребителей. Энергоресурсы - все доступные для пром. и бытового использования источники разнообразных видов энергии: механической, тепловой, химической, электрической, ядерной. (Газ, нефть, уголь, электроэнергия)

4. Периоды развития энергетики

История российской и мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО. Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

В 1940 году суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт*ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в1950 году уровня выработки 90 млрд кВт*ч.

В 50-е годы XX века, в ход были пущены такие электростанции, как Цимлянская, Гюмушская, Верхне-Свирская, Мингечаурская и другие. С середины 60-х годов СССР занимал второе место в мире по выработке электроэнергии после США.

5. Какие энергоресурсы являются возобновляющимся и не возобновляющимся? Возобновляемые источники энергии (ВИЭ) — в современной мировой практике к ВИЭ относят: гидро, солнечную, ветровую, геотермальную, гидравлическую энергии, энергию морских течений, волн, приливов, температурного градиента морской воды, разности температур между воздушной массой и океаном, тепла Земли, биомассу животного, растительного и бытового происхождения.

Невозобновляемые энергоресурсы - Запасы которых не имеют источников пополнения и постепенно уменьшаются в связи с растущим их потреблением (уголь, нефть, газ, ядерная энергия);

6. Природные носители механической энергии.

Носителями механической энергии служат вращающиеся по инерции тела (маховики), а также движение воздуха в атмосфере и воды в реках и морях.

7. Какой закон лежит в основе преобразования

одного вида энергии в другой?

Закон сохранения энергии в механических процессах. Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком: 

A = –(Eр2 – Eр1).



8. Биоэнергетика — отрасль электроэнергетики, основанная на использовании биотоплива.

10. Орошение полей и размол зерна требовал от работников длительной, однообразной, изнурительной механической работы. Но, с другой стороны, именно в этой изнурительной повторяющейся работе, не требовавшей ни мышления, ни мастерства, заключалась возможность перехода к применению энергии прирученного животного или неорганической природы, и в первую очередь энергии воды. Так возникла гидроэнергетика, приведшая к замене человека-двигателя (животного-двигателя) механическим двигателем. На территориях, не располагавших гидроресурсами, сооружались ветровые двигатели. Использование энергии ветра при движении судов известно с глубокой древности. Позднее появились ветровые установки для размола зерна. Однако крайняя неравномерность и низкая концентрация ветровой "готовой" энергии, а также трудности для дальнейшего аккумулирования механической энергии не позволяли энергии ветра занять заметное место в общем энергетическом балансе.

11) Наиболее характерным энергоемким процессом, с которым впервые столкнулся человек, является подъем воды для орошения полей и размола зерна. Первые сведения об использовании водоподъемных устройств можно отнести к 250 году до н.э, когда греческий ученый Архимед создал учение о гидростатике и использовал "винт" для перемещения воды. Но наибольшее распространение строительство водяных и ветряных мельниц получило лишь в X - XI веках н.э Время применения гидравлических двигателей насчитывает более чем двухтысячелетнюю историю и может быть разделено на несколько периодов.

Первый, самый длительный, продолжался от постройки первых водяных колес до середины 30-х годов XIX века. Он характеризуется применением водяных колес разной конструкции. Механическая энергия водяных колес использовалась либо на месте ее получения, либо при помощи механических устройств передавалась на небольшие расстояния

Второй - продолжался от середины 30-х годов до начала 90-х годов XIX века. Был осуществлен переход от водяного колеса к водяной турбине, изучались процессы, происходящие в ней, и усовершенствовалась ее конструкция. Водяное

Только решение проблемы передачи электрической энергии на расстояние положило начало новому этапу (XIX в.) в истории использования гидравлической энергии. При этом осуществлялось превращение механической энергии в энергию электрическую, передававшуюся к месту ее потребления на большие расстояния.

12) Одни из первых гидроэлектрических установок мощностью всего в несколько сотен Вт были сооружены в 1876-81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5-10 км; самая длинная линия 57 км. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС.

13) Саяно-Шушенская 26,8 млрд кВт*ч, Красноярская 20,4 млрд кВт*ч Братская 22,6 млрд кВт*ч Усть-Илимская 21,7 млрд кВт*ч Волжская 12,3 млрд кВт*ч

16) Предпосылки возникновения теплоэнергетики

В любом двигателе нужно различать:

- его независимость от местных условий;

- степень его возможной применимости для разнообразных нужд промышленности.

Двигатель , отвечающий этим требованиям, называется универсальным .

Водяное колесо не отвечает первому требованию. Решение первого требования во многом и определило поиски источника энергии. Вопрос об универсальности пока не ставился.

Практика эксплуатации водоподъемных установок показала, что всасыванием поднять воду выше определенной высоты нельзя. Объяснение этому было дано в 1643 году Э.Торичелли, установившем величину атмосферного давления. Само открытие атмосферного давления натолкнуло ученых и изобретателей на огромную силу атмосферного давления, которая была вокруг и могла быть использована.

Третьей предпосылкой было изучение свойств водяного пара. Практически еще до н.э. люди знали об упругих свойствах пара, полученного при кипячении воды в закрытом объеме. Правда, знания о свойствах водяного пара не отличались точностью: еще в XVIII веке многие ученые считали пар воздухом, выделяющимся из воды при ее нагревании [2].

Источник тепловой энергии - топливо - имел по сравнению с другими источниками, известными в то время, самую высокую энергоемкость. Поэтому поиски нового двигателя неизбежно приводили к тепловому двигателю .

Весь процесс перехода от гидроэнергетики к теплоэнергетике можно разбить на три этапа:

- двигатель неотделим от исполнительного механизма;

- двигатель обособляется конструктивно;

- двигатель становится универсальным .

17

18) Ранние попытки создания теплового двигателя как двигателя , не зависящего от местных условий, были связаны с решением задачи водоподъема. Фактически первые паровые машины использовались для подъема воды из шахт.

Первым последовательность процессов термодинамического цикла парового двигателя описал француз Папен. В машине Папена все основные процессы (образование пара, превращение тепловой энергии в механическую и конденсация пара) протекали в одном агрегате -цилиндре с поршнем. Основными этапами развития парового двигателя явились отделение цилиндра сначала от котла, а потом от конденсатора.

Первой паровой машиной можно считать паровой водоподъемник англичанина Т.Севери, запатентованный в 1698 году. В этой машине двигатель был конструктивно неотделим от потребителя энергии, но сам двигатель был уже отделен от котла. На работу водоподъема затрачивалось 0,5 % теплоты, заключенной в топливе.

Второй этап становления теплового двигателя можно считать этапом отделения теплового двигателя от рабочей машины. Немалая заслуга в этом принадлежит ученым и изобретателям: Папену (Франция), Лейбницу (Германия), Гюйгейнсу и Готфейлю (Голландия) и т.д. Усовершенствованной установкой Севери можно считать двигатель Ньюкомена-Коули. В этой установке двигатель был отделен от насоса, что давало возможность изменять соотношения диаметров поршней и получать высокое давление в насосе при низком давлении в двигателе , а следовательно, поднимать воду с больших глубин при низком давлении пара в котле.

Паровые двигатели на первых этапах развития хоть и имели независимость от местных условий, но в то же время отличались прерывистостью в работе.

Применять эти двигатели для привода промышленных установок было еще рано. Попытки применения паровых машин для перевозки крупных артиллерийских орудий были сделаны во Франции в 1769 году Жозефом Кюньо

Проблема непрерывности передачи работы нашла свое практическое решение путем объединения (суммированием) работы нескольких полостей поршневого парового двигателя .

Широкое распространение технологических машин сделало совершенно неизбежной вторую фазу промышленного переворота -внедрение в производство универсального двигателя .

Если старые машины (песты, молоты и т.д), получавшие движение от водяных колес, были тихоходными и обладали неравномерным ходом, то новые, особенно прядильные и ткацкие, требовали вращательного движения с большой скоростью. Таким образом, требования к техническим характеристикам двигателя приобрели новые черты: универсальный двигатель должен отдавать работу в виде однонаправленного, непрерывного и равномерного вращательного движения.

Первыми практически действующими универсальными паровыми машинами считаются машины, созданные русским изобретателем Иваном Ивановичем Ползуновым и англичанином Джеймсом Уаттом

В машине Ползунова из котла по трубам пар с давлением, немного превышающим атмосферное, поступал поочередно в два цилиндра с поршнями. Для улучшения уплотнения поршни заливали водой. Посредством тяг с цепями движение поршней передавалось мехам трех медеплавильных печей.

Постройка машины Ползунова была закончена в августе 1765 года. Она имела высоту 11 метров, емкость котла 7 м , высоту цилиндров 2,8 метра, мощность 29 кВт.

Машина Ползунова создавала непрерывное усилие и была первой универсальной машиной, которую можно было применять для приведения в движение любых заводских механизмов.

Главным недостатком первых паровых машин был низкий, не превышавший 9%, КПД

20. Возникновение парового транспорта. Двигатели внутреннего сгорания. Паровая турбина. Газовая турбина. Тепловые машины и их влияние на окружающую среду В 1769 г. французский военный инженер Кюньо соорудил паровую повозку (фиг. 4—19) для перевозки артиллерийских орудий. В своей повозке Кюньо правильно намеревался решить задачу непрерывной передачи механической работы ведущему колесу путем двух поочередно работающих цилиндров, повторив метод суммирова­ния работ, предложенный Ползуновым в 1763 г. Но Кюньо не имел возмож­ности построить легкий, небольшой по размерам и высокопроизводитель­ный паровой котел. Испытания повозки Кюньо показали ее непригодность, и дальнейшие опыты были прекращены. Паровая машина была изобретена в XVIII веке!

В 1860 г Ленуар создал двигатель, в котором рабочая смесь, состоявшая из воздуха и светильного газа, сгорала в цилиндре без предварительного сжатия. Газораспределение было не клапанным, а золотниковым. Коэффициент полезного действия этой машины был не большим и составлял примерно 4,5 %, то есть, он был примерно таким же, как и в паровых машинах того времени. Двигателей Ленуара было построено около 1000 шт, их спросом очень пользовались мелкие предприятия.(двигатель внутреннего сгорания)

Попытки создать механизмы, похожие на паровые турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.

Первые Газовая турбина появились в конце 19 в. как часть газотурбинного двигателя и по конструктивному выполнению были близки к паровой турбине.

Влияние на орк среду: Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.

 Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.

 В-третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека.

21 История развития атомной энергетики.Ко времени проведения испытаний первой атомной бомба США,В Росси накопилась большая информация по использованию атомной энергии, и параллельно созданию атомной бомбы в России осуществлялась подготовка к открытию первой в мире АЭС, и в 1954 году- пуск первой в мире атомной электростанции, построенной под руководством Курчатова в подмосковном Обнинске,1955 год - запущен в эксплуатацию первый в мире реактор на быстрых нейтронах БР-1 с нулевой мощностью, а через год - БР-2 тепловой мощностью 100 КВт .

22. Развитие геотермальных электростанций в России .На Камчатке, на Паратунском месторождении в 1967 году была создана опытно-промышленная геотермальная электростанция мощностью около 500 кВт - это был первый опыт получения электроэнергии с помощью геотермального тепла в России. Тогда же началась первая в России промышленная выработка электроэнергии на Паужетской геотермальной электростанции. Последняя до сих пор работает, дает самую дешевую на Камчатке электроэнергию.