Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матем.анализ 3 семестр.doc
Скачиваний:
48
Добавлен:
24.12.2018
Размер:
2.5 Mб
Скачать

Приложения двойного интеграла.

С помощью двойного интеграла можно вычислить объем цилиндрического тела, площадь и массу плоской области. От этих задач мы и пришли к двойному интегралу.

Но возможны и менее очевидные приложения.

С помощью двойного интеграла можно вычислять площадь поверхности, определять статические моменты, моменты инерции и центр тяжести плоской области.

Вычисление площади поверхности с помощью двойного интеграла.

Пусть поверхность , площадь которой надо вычислить, задана уравнением F(x, y, z) = 0 или уравнением z = f(x, y).

Введем разбиение  на ячейки k, не имеющие общих внутренних точек, площадью vk. Пусть область  и ячейки k проектируются на плоскость OXY в область D и ячейки dk площадью sk. Отметим на ячейке dk точку Mk. В точке Qk (ячейки k), которая проектируется в точку Mk, проведем единичный вектор нормали nk {cosk, cosk, cosk} к поверхности  и касательную плоскость. Если приближенно считать равными площадь vk ячейки k и площадь ее проекции на касательную плоскость,

то можно считать справедливым соотношение vk cosk = sk. Выразим отсюда

vk=sk/ cosk. Будем измельчать разбиение при условии max diam k 0, что для кусочно-гладкой поверхности, не ортогональной плоскости OXY, равносильно max diam dk 0. Вычислим площадь поверхности как двойной интеграл

.

Сюда остается лишь подставить .

Если поверхность  задана уравнением F(x, y, z) = 0, то

Поэтому в этом случае , .

.

Если поверхность задана уравнением z = f(x, y), то уравнение это можно

свести к уравнению F(x, y, z) = 0 и применить выведенную формулу:

.

Пример. Вычислить площадь поверхности конуса , ограниченной плоскостями

.

.

Вычисление статических моментов, координат центра тяжести, моментов инерции.

Пусть задана плотность вещества плоской материальной области D (x, y). Выделим элементарную ячейку с массой dm и применим к ней известные формулы для материальной точки:

Статические моменты относительно осей OX, OY dmx = y dm = y (x, y) ds,

dmy = x dm = x (x, y) ds.

Моменты инерции относительно осей OX, OY dJx = y2 dm = y2 (x, y) ds,

dJy = x2 dm = x2 (x, y) ds.

Момент инерции относительно начала координат dJ0 = dJx + dJy.

Двойным интегралом по всей области D вычисляем те же характеристики для области D.

, , , , J0 = Jx + Jy.

Координаты центра тяжести , где - масса области D.

Пример. Вычислить координаты центра тяжести полукруга с заданной плотностью .

(это было ясно заранее, по симметрии полукруга относительно OYи независимости плотности от координаты x).

Поэтому .

Пример. Вычислить момент инерции полукруга с заданной плотностью относительно прямой .

.

Эта формула известна в теоретической механике.

Замечание о несобственных двойных интегралах.

Точно так же, как и в определенных интегралах, вводят несобственные двойные интегралы двух типов: интеграл от непрерывной функции по неограниченной области (первого рода) и интеграл от разрывной функции по ограниченной области (второго рода).

Интеграл первого рода определяют как предел последовательности двойных интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной неограниченной области. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Интеграл второго рода1 определяют как предел последовательности интегралов от непрерывной функции по «расширяющимся» областям, стремящимся к заданной области и исключающим точку разрыва. Если предел существует и конечен, то интеграл называется сходящимся, если предел не существует или бесконечен, то интеграл называется расходящимся.

Пример. Показать, что несобственный интеграл первого рода по области сходится при и расходится при .

Показать, что несобственный интеграл первого рода по области сходится при и расходится при .Вычислим этот интеграл по области .

.

=

=

Часто расширение математических знаний позволяет решать задачи, которые не получались старыми методами.

Пример. Вычислить интеграл Пуассона .

Неопределенный интеграл «не берется». Но двойной интеграл по области равен

I =.

С другой стороны, переходя к полярным координатам, получим

I = .

Поэтому = . По четности .