
- •3. Этапы развития науки (классический, неклассический, постнеклассический). Панорама современного Естествознания. Тенденции развития.
- •6. Наука как система и её основные компоненты. Общенаучные знания.
- •7. Методы современных естественных наук. Суть научного метода, его основные характеристики.
- •8. Формы познания. Структура и методы естественно-научного познания.
- •9. Структурные уровни организации материи. Микро-, макро-, мега- мир. Корпускулярная и континуальная концепции описания природы.
- •10. Структурные уровни макромира. Вещество и поле – виды материи.
- •11. Законы Ньютона. Закон всемирного тяготения.
- •12. Инерциальные и неинерциальные системы отсчета.
- •14. Основные идеи сто, ото. Связь гравитации с пространством–временем.
- •15. Квантово–полевая модель мира. Корпускулярно–волновой дуализм в современной физике. Гипотеза де Бройля.
- •16. Принципы относительности Галилея и Эйнштейна.
- •17. Принцип симметрии, дополнительности, неопределенности, суперпозиции, соответствия, тождественности.
- •18. Свойства пространства, времени и законы сохранения.
- •19. Статистические и термодинамические свойства макросистем. Соотношение статистических и динамических закономерностей в природе.
- •20. Структурные элементы микромира (атомы, ядра, элементарные частицы, молекулы, кварковая модель атома).
- •21. Развитие взглядов на природу света. Формула Планка. Фотон и его характеристики.
- •22. Элементарные частицы и их классификации.
- •24. Парадокс времени в физике. Необратимые процессы и стрела времени.
- •29. Сверхпроводимость; втсп, перспективы их использования.
- •30. Новые вещества (фуллерены, нанотрубки, металлический водород, трансурановые элементы и т.Д.).
- •31. Исследование по созданию разеров, гразеров и сверхмощных лазеров. Перспективы их использования.
- •32. Проблема управляемого термоядерного синтеза.
- •33. Перспективы развития компьютерных технологий.
- •34. История развития знаний о веществе. Фундаментальные законы о составе и свойствах вещества.
- •37. Запасы и потребление сырья. Металлы. Неметаллическое сырье. Природный газ. Углерод. Вторичное сырье. Нефть. Уголь. Биомасса. Древесина.
- •38. Новые химические элементы. Радиоактивные изотопы. Плазмохимические процессы. И прочее.
- •39. Зарождение живой материи. Основополагающие жизненные системы. Хиральность молекул живых организмов.
- •41. Структура и свойства белков. Биосинтез белков. Строение и разновидности клеток. Прокариоты и эукариоты. Деление клеток.
- •42. Современное представление о происхождении жизни. Химическая эволюция. Органогены. Биохимическая стадия развития жизни. Эволюция организмов. Многообразие форм жизни.
- •44. Геологические эры и эволюция жизни. Разновидности живых организмов. Особенности растительного и животного мира. Адаптация живых организмов. Взаимосвязь живых организмов.
- •47. Естественно-научное понимание энергии. Энергия – источник благосостояния. Способы преобразования энергии. Эффективность производства и потребления энергии.
- •48. Тепловые электростанции. Способы повышения эффективности энергосистемы. Парогазовые установки. Проблемы прямого преобразования энергии.
- •49. Водородные двигатели. Гидроэлектростанции. Приливные электростанции. Геотермальные источники энергии.
- •50. Перспективы развития гелиоэнергетики. Современная ветроэнергетика. Развитие атомной энергетики.
- •53. Глобальные катастрофы и эволюция жизни. Космическое и внутрипланетарное воздействие на биосферу. Преодоление экологической катастрофы.
- •54. Метрологические наблюдения. Климат в прошлом. Долгосрочные прогнозы. Равновесие климата.
- •55. Парниковый эффект и погода. Кислотные осадки. Разрушение озонового слоя и проблемы его сохранения. Водные ресурсы. Способы сохранения водных ресурсов.
- •57. Человек и природа.
31. Исследование по созданию разеров, гразеров и сверхмощных лазеров. Перспективы их использования.
В отношении нелинейной физики нужно, быть может, лишний раз подчеркнуть, что внимание к ней все усиливается. В значительной мере это связано с тем, что использование современной вычислительной техники позволяет анализировать задачи, об исследовании которых раньше можно было только мечтать.
Недаром XX век иногда называли не только атомным, но и лазерным веком. Совершенствование лазеров и расширение области их применения идет полным ходом. Особенно интересны сверхмощные лазеры. Так, уже достигнута интенсивность (плотность мощности) порядка 1020–1021 Вт/см2. При такой интенсивности напряженность электрического поля порядка 1012 В/см, т. е. оно на два порядка сильнее поля протона на основном уровне атома водорода. Магнитное поле достигает 109–1010 Э. При этом используются очень короткие импульсы длительностью до 10–15 с (т. е. до фемтосекунды). Использование таких импульсов открывает целый ряд возможностей, в частности, для получения гармоник, лежащих уже в рентгеновском диапазоне, и, соответственно, рентгеновских импульсов с длительностью в аттосекунды (1а = 10–18 с). Родственная проблема — создание и использование разеров и гразеров — аналогов лазеров, соответственно, в рентгеновском и гамма-диапазонах.
32. Проблема управляемого термоядерного синтеза.
Управляемый термоядерный синтез (УТС) — синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B). Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А.
Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mc2. Более легкие атомные ядра проще свести на нужное расстояние, поэтому водород — самый распространенный элемент во Вселенной — является наилучшим горючим для реакции синтеза.
Управляемый термоядерный синтез возможен при одновременном выполнении двух критериев:
-
Скорость соударения ядер соответствует температуре плазмы: T > 108 К.
-
Соблюдение критерия Лоусона: nt > 5*1019 см-3*с, где n - плотность высокотемпературной плазмы, t - время удержания плазмы в системе.
От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.
В настоящее время управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии.