
- •Вопрос № 1 Понятие матрицы. Виды матриц
- •Вопрос № 2 Сложение матриц. Умножение матрицы на число
- •Вопрос № 3 Произведение матриц
- •Вопрос № 5 Определители матриц. Свойства определителей
- •Вопрос № 18
- •Вопрос № 12-(33) Замечательные пределы.
- •Вопрос № 14-(34) Односторонние и двусторонние пределы функции. Точки разрыва и их классификации
- •Вопрос № 9
- •Сравнение бесконечно малых величин. Бесконечно большая величина. Правило Лопиталя. Раскрытие неопределенностей типа 0/0, бесконечность/ бесконечность
- •Вопрос № 7
- •Вопрос № 10 Решение систем линейных уравнений методом Гаусса
- •Вопрос № 8 Матрица, обратной данной и ее вычисление
- •Вопрос № 20-(40) Производные высших порядков Механистический смысл 2ой производной
- •Вопрос № 19-(39) Производные сложной и обратной функции
- •Доказательство
- •Доказательство
- •Вопрос № 22-(42) Теорема Роля, Коши, Лангранжа о дифференцируемых функциях
- •Билет № 17-(37) Правило дифференцирования. Таблица производных
- •Вопрос № 16-(36)
- •Вопрос № 15-(35)
- •Геометрический смысл производной
- •Механический смысл производной
- •Вопрос № 10-(43)
- •Вопрос № 8-(44) Экстремум функции и критические точки. Необходимое экстемума фукции
- •Вопрос № 7-(43)
- •Вопрос № 6-(46) Асимптомы графика функции. Общая схема исследования функции и построение графиков
- •Вопрос № 20 Параллельный перенос и поворот осей координат
- •Вопрос № 21 Общее уравнение прямой. Уравнение прямой с угловым коэффициентом
- •Вопрос № 23 Нормальное уравнение прямой. Расстояние от точки до прямой
- •Вопрос № 1-(24) Угол между прямыми. Условие параллельности и перпендикулярности прямых
- •Вопрос № 11 Методом Крамера
- •Вопрос № 13 Понятие вектора. Операции над векторами в геометрической форме
- •Вопрос № 14 Проекции вектора на ось и ее свойства
- •Вопрос № 15 Разложение вектора по ортам координатных осей
- •Вопрос № 14-(32) Теоремы о непрерывных функциях.
- •Вопрос № 11-(30) Бесконечно малые величины (функции). Теоремы о бесконечно малых величинах
- •Вопрос № 10-(29) Понятие последовательности и ее предела. Предел функции. Теоремы о пределах
- •Уравнение параболы и исследование ее формы
- •Вопрос № 5-(27) Уравнение гиперболы и исследование ее формы. Эксцентриситет и ассимптоматы гиперболы
- •Вопрос № 4-(25)
Вопрос № 1 Понятие матрицы. Виды матриц
Матрицами называются массивы элементов, представленные в виде прямоугольных таблиц, для которых определены правила математических действий. Элементами матрицы могут являться числа, алгебраические символы или математические функции.
Матрица обозначается одной из заглавных букв латинского алфавита, а набор ее элементов помещается в круглые скобки:
|
|
|
|
Представленная формулой (1) матрица A имеет m строк и n столбцов и называется m×n матрицей (“эм на эн матрицей”) или матрицей размера m×n. Строки матрицы нумеруются сверху вниз, а столбцы – слева направо
ВИДЫ МАТРИЦ
Если в матрице число строк равно числу столбцов, то матрица называется квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.
Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.
Различаются также матрицы, имеющие только одну строку или один столбец.
Матрица,
у которой всего одна строка
,
называется матрицей
– строкой
(или строковой), а матрица, у которой
всего один столбец,
матрицей
– столбцом.
Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,
.
Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.
Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.
.
Квадратная
матрица, у которой все элементы, кроме,
быть может, стоящих на главной диагонали,
равны нулю, называется диагональной
матрицей.
Например,
или
.
Диагональная
матрица, у которой все диагональные
элементы равны единице, называется
единичной
матрицей
и обозначается буквой E. Например,
единичная матрица 3-го порядка имеет
вид
.
ВОПРОС № 6
определитель это число, которое определённым образом ставится в соответствие матрице.
Пусть
дана матрица второго порядка – квадратная
матрица, состоящая из двух строк и двух
столбцов
.
Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.
Определитель
обозначается символом
.
Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.
Примеры. Вычислить определители второго порядка.
-
-
.
-
Вычислить определитель матрицы D, если D= -А+2В и
Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:
.
Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.
Примеры. Вычислить определитель третьего порядка.
-
.
-
.