
- •1.Чи забезпечує принцип оптимальності незалежність наступних розв’язків від здобутих раніше?
- •2. Охарактеризуйте головні групи методів розв’язування задач цілочислового програмування.
- •3. Дайте економічну інтерпретацію прямої та двоїстої задач лінійного програмування.
- •4.Принцип оптимальності р. Белмана
- •5. Як визначити чи, що виробництво продукції є рентабельним (нерентабельним)
- •6. Що означає правильне відтинання?
- •7. Як розрахувати інтервали можливих змін цін на одиницю кожного виду продукції?
- •8. Поясніть, що називається областю допустимих планів.
- •9. Яка задача математичного програмування називається цілочисловою
- •10. Опишіть алгоритм методу Гоморі
- •11. Як звести задачу лінійного програмування до канонічної форми?
- •12. Як звести відкриту транспортну задачу на закриту?
- •13. Як виробник має змінити план виробництва продукції, щоб уникнути втрат, пов"язаних із надвиробництвом відповідного виду продукції?
- •14. Як геометрично можна інтерпретувати розв"язок задачі цілочислового програмування?
- •15. Сформулюйте правила побудови двоїстих задач.
- •16. Які задачі лінійного програмування можна розв’язати графічним методом
- •17. Сформулюйте умови оптимальності розв’язку задачі симплекс методом
- •18. Сформулюйте необхідну і достатню умови існування розв’язку транспортної задачі
- •19. У чому сутність теорії двоїстості у лінійному програмуванні
- •20. Для розв’язування яких математичних задач застосовується симплекс метод?
- •21. Як вибрати спрямовуючий вектор-стовпець?
- •22. Що означає "виродження" опорного плану? Як його позбутися?
- •23. Поясніть геометричну інтерпретацію задачі лінійного програмування.
- •24. Скільки змінних та обмежень має двоїста задача відповідно до прямої?
- •25. Суть алгоритму симплексного методу.
- •26. Сформулюйте третю теорему двоїстості та дайте її економічне тлумачення.
- •27. Назвіть методи розв"язування задач динамічного програмування
- •28. За яких умов задача лінійного програмування з необмеженою областю допустимих планів має розв’язок
- •29. Сформулюйте основні аналітичні властивості розв’язків задачі лінійного програмування.
- •30. Які ви знаете властивості опорних планів транспортної задачі?
- •31. Побудуйте просту економіко-математичну модель. Запишіть до неї двоїсту. Дайте економічну інтерпретацію двоїстих оцінок.
- •32. Економічна і математична постановка транспортної задачі.
- •33. Як впливає на оптимальний план введення нової змінної.
- •34. Як вибрати розв’язуваний елемент?
- •35. Чим відрізняється транспортна задача від загальної задачі лінійного програмування?
- •36. Які взаємоспряжені задачі називаються симетричними, а які – несиметричними? Чим вони відрізняються?
- •37. Опишіть алгоритм методу гілок та меж.
- •38. Сформулюйте задачу динамічного програмування.
- •39. Як визначити статус ресурсів прямої задачі та інтервали стійкості двоїстих оцінок відносно змін запасів дефіцитних ресурсів?
- •40. Суть методу Жордана-Гаусса.
- •41. Назвіть умови оптимальності транспортної задачі.
- •42. Як визначити, що ресурс є дефіцитним (недефіцитним)?
- •43. Суть методу штучного базису.
- •44. Як впливає на оптимальний план введення додаткового обмеження?
- •45. Назвіть етапи алгоритму методу потенціалів.
- •46. Наведіть приклади економічних задач, що належать до класу задач динамічного програмування.
- •47. Які ви знаєте методи побудови опорного плану?
- •48. Який опорний план називається не виродженим?
- •49. Сформулюйте другу теорему двоїстості та її економічне тлумачення.
- •50. Як за розв’язком прямої задачі знайти розв’язок двоїстої?
- •51.Запишіть загальну математичну модель задачі лінійного програмування.
- •52. Які є форми запису задач лінійного-програмування.
- •53. Чим відрізняється відкрита транспортна задача від закритої?
- •54. Який розв’язок задачі лінійного програмування називається допустимим?
- •55. Як визначити рентабельність кожного виду продукції, що виготовляється на підприємстві?
- •56. Який план називається опорним?
- •57. Наведіть приклади економічних задач, що належать до цілочислових.
- •58. Запишіть усі можливі види прямих і двоїстих задач.
- •59. Суть алгоритму графічного методу розв`язування задач лінійного програмування
- •60. Як обчислюють потенціали?.
- •61. Опишіть економічну і математичну постановку двох етапної транспортної задачі.
- •62. Як визначити план виробництва продукції та зміну доходу підприємства, якщо збільшити (зменшити) обсяг ресурсів?
- •63. Сформуйте другу теорему двоїстості та дайте її економічне тлумачення.
23. Поясніть геометричну інтерпретацію задачі лінійного програмування.
Розглянемо на площині х1Оx2 сумісну систему лінійних нерівностей:
(2.9)
Кожна нерівність цієї системи геометрично визначає півплощину з граничною прямою ai1x1 + ai2x2 = bi (i = 1, 2, ...,т). Умови невід’ємності змінних визначають півплощини з граничними прямими х1 = 0 та х2 = 0. Система сумісна, тому півплощини як опуклі множини, перетинаючись, утворюють спільну частину, що є опуклою множиною і являє собою сукупність точок, координати кожної з яких є розв’язком даної системи.
Сукупність цих точок (розв’язків) називають багатокутником розв’язків, або областю допустимих планів (розв’язків) задачі лінйного програмування. Це може бути точка (єдиний розв’язок), відрізок, промінь, багатокутник, необмежена багатокутна область.
Якщо в системі обмежень (2.9) буде три змінних, то кожна нерівність геометрично визначатиме півпростір тривимірного простору, граничними площинами котрого будуть ai1x1 + ai2x2 + ai3x3 = bi (i = 1, 2, ...,т), а умови невід’ємності — півпростори з граничними площинами хj = 0 (j = 1, 2, 3), де і — номер обмеження, а j — номер змінної. Якщо система обмежень сумісна, то ці півпростори як опуклі множини, перетинаючись, утворять у тривимірному просторі спільну частину, що називається багатогранником розв’язків. Він може бути точкою, відрізком, променем, багатокутником, багатогранником, багатогранною необмеженою областю.
Нехай у системі обмежень (2.9) кількість змінних більша, ніж три: х1, х2,… хn; тоді кожна нерівність визначає півпростір n-вимірного простору з граничною гіперплощиною аi1x1 + ai2x2 + ai3x3 + … +ainxn = bi (i = 1, 2, ...,т). Кожному обмеженню виду (2.9) відповідають гіперплощина та напівпростір, який лежить з одного боку цієї гіперплощини, а умови невід’ємності — півпростори з граничними гіперплощинами хj = 0 (j = 1, 2, 3, ..., n).
Якщо система обмежень сумісна, то за аналогією з тривимірним простором вона утворює спільну частину в n-вимірному просторі — опуклий багатогранник допустимих розв’язків.
Отже, геометрично задача лінійного програмування являє собою відшукання координат такої точки багатогранника розв’язків, при підстановці яких у цільову лінійну функцію остання набирає максимального (мінімального) значення, причому допустимими розв’язками є усі точки багатогранника розв’язків.
Цільову функцію
в п-вимірному просторі основних змінних можна геометрично інтерпретувати як сім’ю паралельних гіперплощин, положення кожної з яких визначається значенням параметра Z.Критерієм оптимальності є максимізація прибутку.
24. Скільки змінних та обмежень має двоїста задача відповідно до прямої?
Двоїста задача має дві змінні, а отже, її можна розв’язати графічно (рис. 3.2).
Рис. 3.2
Найбільшого значення цільова функція двоїстої задачі F досягає в точці В багатокутника ABCD. Її координати визначимо розв’язанням системи рівнянь:
Отже, Y* = (– 2/3; 4/3); mах F = 1 х (– 2/3) + 4 х 4/3 = 14/3.
Оптимальний план прямої задачі визначимо за допомогою співвідношень другої теореми двоїстості. Підставимо Y* у систему обмежень двоїстої задачі і з’ясуємо, як виконуються обмеження цієї задачі:
Оскільки
перше обмеження для оптимального плану
двоїстої задачі виконується як строга
нерівність, то висновуємо, що перша
змінна прямої задачі дорівнюватиме
нулю х1 = 0
(перша частина другої теореми двоїстості).
Тепер проаналізуємо оптимальний план
двоїстої задачі. Оскільки друга
компонента плану у2 = 4/3
додатна, то друге обмеження прямої
задачі для Х*виконуватиметься
як строге рівняння (друга частина другої
теореми двоїстості). Об’єднуючи здобуту
інформацію, можна записати систему
обмежень прямої задачі як систему двох
рівнянь, в якій х1 = 0,
та визначити решту змінних:
тобто
Х*
= (0; 5/3; 2/3), min Z
= 1 х 0 + 2 х 5/3 + 2 х 2/3 = 14/3. Умова min Z
= max F
= 14/3 виконується, і тому Х*
= (0; 5/3; 2/3); Y* = (–
2/3; 4/3) є оптимальними планами відповідно
прямої та двоїстої задач.