
- •Электротехника: вопросы к экзамену (с ответами)
- •Конденсаторы
- •Смешанное соединение конденсаторов
- •Электрическое сопротивление
- •Работа, мощность и кпд. Закон Джоуля-Ленца.
- •Закон Джоуля — Ленца
- •Понятие о противо - эдс. Понятие о режимах электрической цепи и ее элементов: номинальный, рабочий, холостого хода, короткого замыкания.
- •Режимы работы электрических цепей
- •Параллельное соединение потребителей
- •Закон Ома для участка цепи
- •Метод контурных токов
- •Расчет цепей постоянного тока методом законов Кирхгофа.
- •Магнитное поле (мп). Магнитная индукция. Магнитное поле
- •Магнитная индукция
- •Магнитный поток, потокосцепление. Собственное потокосцепление. Индуктивность катушки. Магнитный поток
- •Закон электромагнитной индукции. Эдс индукции. Правило Ленца.
- •9.1. Явление и эдс электромагнитной индукции
- •9.2. Преобразование энергий. Правило Ленца Преобразование механической энергии в электрическую
- •Самоиндукция. Эдс самоиндукции и взаимной индукции. Вихревые токи.
- •Вихревые токи
- •Синусоидальный ток, его мгновенное и амплитудное значения. Период, частота, циклическая частота, фаза, начальная фаза.
- •10.1. Основные понятия
- •Фаза и сдвиг фаз
- •Синусоидальный ток, его получение.
- •Среднее и действующие значения переменного тока.
- •10.3. Среднее и действующее значения
- •Действующее значение переменного тока
- •Цепь переменного тока с активным сопротивлением. Цепь с активным сопротивлением
- •Цепь переменного тока с индуктивным сопротивлением.
- •Цепь переменного тока с емкостным сопротивлением.
- •Расчет цепи, состоящей из параллельно включенных активного индуктивного и емкостного сопротивлений.
- •13.3. Параллельное соединение катушки и конденсатора
- •Трехфазные системы, соединение обмоток генератора в звезду и треугольник.
- •Трехфазные цепи и векторные диаграммы при коротких замыканиях фаз и обрыве линейных проводов.
- •Понятие коммутации. Принципы коммутации.
-
Цепь переменного тока с активным сопротивлением. Цепь с активным сопротивлением
Активным сопротивлением R обладают элементы, которые нагреваются при прохождении через них тока (проводники, лампы накаливания, нагревательные приборы и т.д.).
Если к активному сопротивлению R приложено синусоидальное напряжение u= Umsinώt, то и ток в этой цепи изменяется по синусоидальному закону (рис. 11.1 в):
где
Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, так как начальные фазы их равны (ψi = ψU = O).
Математическое
выражение закона Ома для цепи переменного
тока
с активным сопротивлением имеет вид:
Таким
образом,
действующее значение синусоидального
тока I
пропорционально
действующему значению синусоидального
напряжения U
и обратно
пропорционально сопротивлению R
участка,
к которому приложено напряжение U.
-
Цепь переменного тока с индуктивным сопротивлением.
ЭДС самоиндукции в цепи с идеальной индуктивностью L, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстает от тока по фазе на угол 90°.
Напряжение,
приложенное к цепи с идеальной
индуктивностью,
как и ток в этой цепи, изменяется по
синусоидальному закону,
но опережает ток по фазе на угол 90°.
Вывод:
для
существования тока в цепи с идеальной
индуктивностью необходимо приложить
к цепи напряжение, которое в любой момент
времени
равно по величине, но находится в противофазе с ЭДС, вызванной этим током (рис. 11.46, в).
Это уравнение и есть математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью. Очевидно, знаменатель этого уравнения есть не что иное, как сопротивление, которое называют индуктивным сопротивлением XL.
Таким
образом,
Закон Ома для этой цепи можно записать иначе:
Индуктивное сопротивление XL — это противодействие, которое ЭДС самоиндукции eL оказывает изменению тока.
-
Цепь переменного тока с емкостным сопротивлением.
Цепь с емкостью
Ток в цепи конденсатора, подключенного к источнику с синусоидальным напряжением, имеет место потому, что напряжение на конденсаторе Uc отстает по фазе от напряжения источника при зарядке, и при разрядке конденсатора.
Очевидно,
ток в цепи конденсатора достигает
амплитудного
значения
тогда, когда
Тогда
Ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол 90°
Это равенство и является математическим выражением закона Ома для цепи переменного тока с емкостью. Очевидно, знаменатель этого равенства является сопротивлением конденсатора Хс, которое называется емкостным сопротивлением:
Тогда закон Ома для цепи с конденсатором можно записать:
Емкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему.
-
Неразветвленная RL-цепь.
-
Неразветвленная RC-цепь.
-
Неразветвленная RLC-цепь.