Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на д.м.doc
Скачиваний:
6
Добавлен:
21.12.2018
Размер:
247.81 Кб
Скачать

Вопрос 2

  1. Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n) — это квадратная матрица A размера n, в которой значение элемента aij равно числу рёбер из i-й вершины графа в j-ю вершину.

  2. Матрица инцидентности — одна из форм представления графа, в которой указываются связи между инцидентными элементами графа (ребро(дуга) и вершина). Столбцы матрицы соответствуют ребрам, строки — вершинам.

Билет 9

Вопрос 1

  1. Мощность множества, или кардинальное число множества, — это обобщение понятия количества (числа) элементов множества, которое имеет смысл для всех множеств, включая бесконечные.

  2. Два множества называются равномощными, если между ними существует биекция. Существование биекции между множествами есть отношение эквивалентности, а мощность множества — это соответствующий ему класс эквивалентности. Класс множеств, биективно эквивалентных данному, не является, однако, множеством

3.Теорема Кантора — Бернштейна (в англ. литературе теорема Кантора — Бернштейна — Шрёдера), утверждает, что если существуют инъективные отображения и между множествами A и B, то существует взаимооднозначное отображение . Другими словами, что мощности множеств A и B совпадают:

| A | = | B | .

Другими словами, теорема утверждает следующее:

Из и следует, что где — кардинальные числа

Вопрос 2

1. Графы G1 и G2 наз. гомеоморфными, если существуют такие их подразбиения, к-рые изоморфны(ГРАФОВ ИЗОМОРФИЗМ

- отношение эквивалентности на множестве графов)

2. Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных , и не содержит подграфов, гомеоморфных . Необходимость

Необходимость условия очевидна.

Достаточность

От противного: пусть существует непланарный граф, который не содержит подграфов, гомеоморфных или . Пусть — такой граф с наименьшим возможным числом рёбер, не содержащий изолированных вершин.