Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат лог Л 02 24-39.doc
Скачиваний:
0
Добавлен:
21.12.2018
Размер:
280.58 Кб
Скачать

Лекція 2 План

  1. Логічні значення складного висловлення.

  2. Класифікація формул алгебри висловлень.

  3. Тавтології алгебри висловлень.

  4. Основні правила одержання тавтологій.

1. Логічні значення складного висловлення.

Зазначимо, що у алгебрі висловлень розглядаються лише логічні значення висловлень, а не їх зміст. Якщо у формулу алгебри висловлень F(X1, X2, ..., Хn) замість пропозиційних змінних X1, X2, ..., Хn підставити конкретні висловлення A1, A2, ..., An то одержимо деяке нове складне висловлення F(A1, A2, ..., An). Воно називається конкретизацією формули F(X1, X2, ..., Хn). на наборі висловлень A1, A2, ..., An.

Якщо формула F(X1, X2, ..., Хn) при підстановці замість її пропозиційних змінних X1, X2, ..., Хn висловлень A1, A2, ..., An з логічними значеннями λ(A1)=α1, λ(A2)=α2, …, λ(An)=αn перетворюється у висловлення F(A1, A2, ..., An) з логічним значенням λ(F(A1, A2, ..., An))=α, то будемо говорити, що формула F(X1, X2, ..., Хn) приймає значення α, якщо її змінні X1, X2, ..., Хn приймають значення α1, α2, …, αn й відповідно писати X11, X22, …, Xnn і F(α1, α2, …, αn)=α, где α1, α2, …, αn, α {0, 1}. Для знаходження значення F(α1, α2, …, αn) потрібно підставити у формулу F(X1, X2, ..., Хn) замість пропозиційних змінних X1, X2, ..., Хn значення α1, α2, …, αn і в одержаному виразі послідовно виконати всі дії з нулями й одиницями згідно визначенню відповідних операцій. Для визначення логічного значення формул складаються відповідні таблиці істинності.

Розглянемо приклад. Скласти таблицю істинності для формули .

У перших двох стовпцях таблиці випишемо всі можливі пари логічних значень пропозиційних змінних X і Y. У наступних стовпцях виписуємо логічні значення формул , і , які утворюють так звану породжуючу послідовність для даної формули. В результаті одержимо таблицю

0

0

1

1

1

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

Розглянемо ще один приклад. Таблиця істинності формули

має наступний вигляд

0

0

0

0

1

0

1

0

0

1

0

0

1

1

0

1

0

0

1

0

1

0

1

1

0

0

1

1

1

0

0

0

1

1

1

1

0

1

0

0

0

1

1

1

0

1

1

1

1

1

1

1

1

0

0

0

Таблицю істинності формули можна скласти у скороченому вигляді.

Складемо, наприклад, таблицю істинності для формули . У першому рядку таблиці запишемо дану формулу. Під змінними Х і Y виписуємо всі можливі набори їх логічних значень. Далі стовпець під першим знаком заповнимо логічними значеннями формули , виходячи з відповідних значень змінної Y, а стовпець під знаком  логічними значеннями формули , виходячи з відповідних логічних значень формул і . Потім заповнюємо стовпець під другим знаком значеннями формули і стовпець під знаком  значеннями формули . Нарешті заповнюємо стовпець під знаком логічними значеннями даної формули. В результаті маємо

0 0 1 0 1 1 0

0 0 0 0 1 1 1

1 1 1 0 0 0 0

1 0 0 0 0 1 1.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.