Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
напряжения и закон Гука.docx
Скачиваний:
12
Добавлен:
21.12.2018
Размер:
131.08 Кб
Скачать

3. Напряженное и деформированное состояния упругого тела. Связь между напряжениями и деформациями

3.1. Понятие о напряжении тела в данной точке. Нормальные и касательные напряжения

Внутренние силовые факторы, возникающие при нагружении упругого тела, характеризуют состояние того или иного сечения тела, но не дают ответа на вопрос о том, какая именно точка поперечного сечения является наиболее нагруженной, или, как говорят, опасной точкой. Поэтому необходимо ввести в рассмотрение какую-то дополнительную величину, характеризующую состояние тела в данной точке.

Если тело, к которому приложены внешние силы, находится в равновесии, то в любом его сечении возникают внутренние силы сопротивления. Обозначим через внутреннее усилие, действующее на элементарную площадку , а нормаль к этой площадке через тогда величина

(3.1)

называется полным напряжением.

В общем случае полное напряжение не совпадает по направлению с нормалью к элементарной площадке, поэтому удобнее оперировать его составляющими вдоль координатных осей —

Если внешняя нормаль совпадает с какой-либо координатной осью, например, с осью Х, то составляющие напряжения примут вид при этом составляющая оказывается перпендикулярной сечению и называется нормальным напряжением, а составляющие будут лежать в плоскости сечения и называются касательными напряжениями.

Чтобы легко различать нормальные и касательные напряжения обычно применяют другие обозначения: — нормальное напряжение, — касательное.

Выделим из тела, находящегося под действием внешних сил, бесконечно малый параллелепипед, грани которого параллельны координатным плоскостям, а ребра имеют длину . На каждой грани такого элементарного параллелепипеда действуют по три составляющие напряжения, параллельные координатным осям. Всего на шести гранях получим 18 составляющих напряжений.

Нормальные напряжения обозначаются в виде , где индекс обозначает нормаль к соответствующей грани (т.е. может принимать значения ). Касательные напряжения имеют вид ; здесь первый индекс соответствует нормали к той площадке, на которой действует данное касательное напряжение, а второй указывает ось, параллельно которой это напряжение направлено (рис.3.1).

Рис.3.1. Нормальные и касательные напряжения

Для этих напряжений принято следующее правило знаков. Нормальное напряжение считается положительным при растяжении, или, что то же самое, когда оно совпадает с направлением внешней нормали к площадке, на которой действует. Касательное напряжение считается положительным, если на площадке, нормаль к которой совпадает с направлением параллельной ей координатной оси, оно направлено в сторону соответствующей этому напряжению положительной координатной оси.

Составляющие напряжений являются функциями трех координат. Например, нормальное напряжение в точке с координатами можно обозначать

В точке, которая отстоит от рассматриваемой на бесконечно малом расстоянии, напряжение с точностью до бесконечно малых первого порядка можно разложить в ряд Тейлора:

Для площадок, которые параллельны плоскости изменяется только координата х, а приращения Поэтому на грани параллелепипеда, совпадающей с плоскостью нормальное напряжение будет , а на параллельной грани, отстоящей на бесконечно малом расстоянии , — Напряжения на остальных параллельных гранях параллелепипеда связаны аналогичным образом. Следовательно, из 18 составляющих напряжения неизвестными являются только девять.

В теории упругости доказывается закон парности касательных напряжений, согласно которому по двум взаимно перпендикулярным площадкам составляющие касательных напряжений, перпендикулярные линии пересечения этих площадок, равны друг другу:

(3.2)

Равенства (3.2) приводят к тому, что из девяти составляющих напряжений, характеризующих напряженное состояние в точке тела, остаются только шесть:

(3.3)

Можно показать, что напряжения (3.3) не просто характеризуют напряженное состояние тела в данной точке, но определяют его однозначно. Совокупность этих напряжений образует симметричную матрицу, которая называется тензором напряжений:

(3.4)

Так как в каждой точке будет свой тензор напряжений, то в теле имеется поле тензоров напряжений.

Тензоры можно складывать и вычитать, при этом суммой двух тензоров является тензор, компоненты которого представляют собой сумму соответствующих компонентов слагаемых тензоров.

При умножении тензора на скалярную величину получится новый тензор, все компоненты которого в раз больше компонентов исходного тензора.

 

НА ОГЛАВЛЕНИЕ                   ДАЛЕЕ

Соседние файлы в предмете Сопротивление материалов