- •Механика и молекулярная физика Контрольные задания для студентов всех специальностей
- •Введение
- •1. Физические основы механики
- •1.1. Основные формулы и законы Кинематика
- •Динамика материальной точки и тела, движущегося поступательно
- •1.1.3. Механика твёрдого тела
- •1.1.4. Механические колебания
- •1.2. Примеры решения задач
- •Согласно теореме косинусов, получим:
- •1.3. Задания Вариант 1
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •2. Молекулярная физика и термодинамика
- •2.1. Основные формулы и законы Молекулярная физика
- •Физические основы термодинамики
- •2.2. Примеры решения задач
- •Решение. Из уравнения Менделеева – Клапейрона
- •Решение. Воздух, являясь смесью идеальных газов, тоже представляет собой идеальный газ, и к нему можно применить уравние Менделеева–Клапейрона:
- •Решение. В основном уравнении молекулярно- кинетической теории –
- •Решение. Вычислим значения молярных теплоемкостей водорода, учитывая, что молекулы водорода – двухатомные, а число I степеней свободы равно пяти:
- •Используя условие задачи и уравнение для изобарического процесса
- •Решение. Поскольку совершается адиабатический процесс, для решения используем уравнение адиабаты в виде
- •Решение. Термический кпд тепловой машины показывает, какая доля теплоты, полученной от теплоотдатчика, превращается в механическую работу:
- •По формуле
- •Из рисунка видно, что
- •2.3. Задания
- •Вариант 2
- •Вариант 3
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 10
- •3. Некоторые внесистемные величины:
- •4. Основные физические постоянные:
- •7. Молярные массы (м 10-3 кг/моль) газов:
- •Библиографический список
- •Оглавление
- •Механика и молекулярная физика Контрольные задания для студентов всех специальностей
Вариант 4
1. Материальная точка массой 0,05 кг совершает гармонические колебания, уравнение которых имеет вид х=0,1sin5t. Найти силу, действующую на точку: а) в момент, когда фаза колебаний =300; б) при наибольшем отклонении точки.
2. Диск радиусом r = 20 см вращается согласно уравнению = A +Bt+Ct3 , где A=3 рад; B= – 1 рад/с; C=0,1 рад/с3. Определить тангенциальное, нормальное и полное ускорения точек на окружности диска для момента времени, равного 10 с.
3. Снаряд, выпущенный из орудия под углом 300 к горизонту, дважды был на одной и той же высоте h: спустя 10 с и 50 с после выстрела. Определить начальную скорость и высоту h.
4. Через вращающийся вокруг горизонтальной оси блок перекинута невесомая нерастяжимая нить, к концам которой привязаны грузы массой 0,5 кг и 0,6 кг. Найти силу давления блока на ось при движении грузов. Массой блока и трением в оси можно пренебречь.
5. Снаряд, летевший горизонтально со скоростью 100 м/с, разрывается на две равные части на высоте 40 м. Одна часть падает через 1 с на землю точно под местом взрыва. Определить величину и направление скорости движения второй части снаряда сразу после взрыва.
6. Тело, брошенное с высоты 5 м вертикально вниз со скоростью 20 м/с, погрузилось в грунт на глубину 20 см. Найти работу силы сопротивления грунта, если масса тела равна 2 кг. Сопротивлением воздуха пренебречь.
7. Маховое колесо, имеющее момент инерции 245 кгм2, вращается, делая 20 оборотов в секунду. Через 1 мин после того как на колесо перестал действовать вращающий момент, оно остановилось. Найти: а) момент сил трения; б) число оборотов, которое сделало колесо до полной остановки (после прекращения действия сил).
8. Летчик давит на сиденье кресла самолета в нижней точке петли Нестерова с силой в 7200 Н. Масса летчика 80 кг, радиус петли 250 м. Определить скорость самолета.
9. Платформа в виде диска вращается по инерции вокруг вертикальной оси с частотой 15 об/мин. На краю платформы стоит человек. Когда человек перешел в центр платформы, частота возросла до 25 об/мин. Масса человека 70 кг. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.
10. К ободу покоящегося диска массой 5 кг приложена постоянная касательная сила в 20 Н. Какую кинетическую энергию будет иметь диск через 5 с после начала действия силы? Диск может свободно вращаться относительно оси, проходящей через центр диска и перпендикулярной его плоскости.
11. Полная энергия тела, совершающего гармонические колебания по синусоидальному закону, равна 30 мкДж; максимальная сила, действующая на тело, составляет 1,5 мН. Написать закон движения этого тела, если период колебания равен 2 с и начальная фаза равна π/3.
12. Определить период колебаний груза массой 2,5 кг, подвешенного к пружине, если пружина под действием силы в 30 Н растягивается на 9 см.
13. Точка одновременно участвует в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x=3cosωt и x=4cosωt. Определить уравнение траектории точки.
14. К пружине подвешен груз. Максимальная кинетическая энергия колебаний груза 1 Дж. Амплитуда колебаний равна 5 см. Найти жесткость пружины.
15. Два гармонических колебания одного направления, описываются такими уравнениями: x1=2sin(2πt+π/4) и x2 =2sin(2πt+π). Записать уравнение результирующего колебания и представить векторную диаграмму сложения амплитуд. Построить графики колебаний x1, x2 и результирующего колебания.