Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
508338_543BF_ahmetova_n_a_usmanova_z_m_diskretn....doc
Скачиваний:
47
Добавлен:
19.12.2018
Размер:
3.98 Mб
Скачать

3.2 Минимизация частично определенных функций

Пусть функция f(x1,…,xn) частично (не всюду) определена. Если f не определена на p наборах из 0 и 1, то существует 2p возможностей для доопределения функции f. Полностью определенная функция g (x1,…,xn) есть доопределение функции f, если g совпадает с f на тех наборах из 0 и 1, на которых f определена.

Задача минимизации частично определенной функции f сводится к отысканию такого доопределения g функции f, которое имеет простейшую (по числу букв ) минимальную форму.

Обозначим через f0(x1,…,xn) и f1(x1,…,xn) доопределения нулями и единицами соответсвенно частично определенной функции f(x1,…,xn).

Теорема. Минимальная ДНФ частично определенной функции f(x1,…,xn) есть дизъюнкция самых коротких импликант в сокращенной ДНФ доопределения f1(x1,…,xn), которые в совкупности накрывают все конституенты единицы доопределения f0(x1,…,xn).

Доказательство. Рассмотрим СДНФ некоторого доопределения g(x1,…,xn) функции f(x1,…,xn). Конституенты единицы, входящие в эту форму, войдут и в СДНФ доопределения f1. Поэтому любой простой импликант функции g будет совпадать с некоторым импликантом функции f1 или накрываться им. Самые короткие импликанты , накрывающие единицы функции f , есть импликанты функции f1. Доопределение f0 имеет минимальное количество конституент единицы в своей СДНФ , следовательно , и количество простых импликант функции f1 , потребных для накрытия этих конституент , будет наименьшим . ДНФ , составленная из самых коротких простых импликант в сокращенной ДНФ функции f1 , накрывающих все конституенты единицы функции f0 , будет самой короткой ДНФ, доопределяющей функцию f .

Так как единицы функции f1 составлены из единиц функции f и единиц на наборах , на которых f не определена , то построенная ДНФ , накрывая все единицы функции f0 ( а , следовательно , и все единицы функции f ) , совпадает с минимальной ДНФ некоторого доопределения g функции f .

Алгоритм минимизации частично определенных функций

в классе ДНФ

1. Строим СДНФ функции f0 .

2. Строим сокращенную ДНФ функции f1 .

3. С помощью матрицы покрытий коституент единицы функции f0 простыми импликантами функции f1 и решеточного выражения строим все тупиковые ДНФ (для некоторых доопределений функции f ) .

4. Среди полученных ТДНФ выбираем простейшие, они являются минимальными ДНФ ( для некоторых доопределений функции f ) .

Алгоритм минимизации частично определенных функций

в классе КНФ

Построение минимальных КНФ для частично определенной функции аналогично построению минимальных КНФ для всюду определенной функции.

Алгоритм минимизации частично определенных функций в классе нормальных форм аналогичен алгоритму минимизации в классе нормальных форм для всюду определенных функций.

Пример 1. В классе нормальных форм минимизировать частично определенную функцию f ( x, y, z, t ) = (1---010010-01--1)

Решение. Минимизируем функцию f в классе ДНФ.

1. Строим сокращенную ДНФ для доопределения единицами f1 функции f по таблице 3.9.

Таблица 3.9

x y z t

f f0 f1f h0 h1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1 1 1 0 0 0

- 0 1 - 0 1

- 0 1 - 0 1

- 0 1 - 0 1

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

0 0 0 1 1 1

- 0 1 - 0 1

0 0 0 1 1 1

1 1 1 1 1 1

- 0 1 - 0 1

- 0 1 - 0 1

1 1 1 0 0 0

2. Строим матрицу покрытий коституент единицы в СДНФ для доопределения нулями f0 функции f с помощью построенной сокращенной ДНФ для f1 ( таблица 3.10).

Таблица 3.10

N

ПИ

1

+

+

2

+

3

+

+

4

+

+

5

+

6

+

3. По таблице строим решеточный многочлен

E = (24)(56)(34)(13)1 = 145  125  146  1236.

4. Строим все тупиковые ДНФ :

5. Из построенных тупиковых ДНФ выбираем минимальные :

Функции g1 и g3 есть минимальные доопределения функции f в классе ДНФ.

Минимизируем теперь функцию f в классе КНФ. Для этого проведем минимизацию функции f в классе ДНФ Пусть h0 и h1 есть доопределение нулями и единицами соответственно функции f .

Сокращенная ДНФ для

Матрица покрытия конституент единицы в СДНФ для h0 с помощью простых импликант в сокращенной ДНФ для h1 приведена в таблице 3.11.

Таблица 3.11

N

ПИ

1

+

+

2

+

+

3

+

4

+

5

+

+

6

+

3. Решеточное выражение E=5 (2  3 5) 2 (1 4)(1 6) = 25(1 46) = 125  2446.

4. Строим две тупиковые ДНФ:

и

Минимальная.

5. Функция есть минимальное доопределение функции f в классе КНФ.

Найденные МДНФ g1 , g3 и МКНФ являются минимальными доопределениями функции f в классе нормальных форм.

Техническая реализация минимальных форм для функции часто проще, а потому дешевле реализации ее СДНФ ( СКНФ ) . Следовательно, этап минимизации при конструировании логических схем является одним из важнейших.