Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен по АЦНС.doc
Скачиваний:
47
Добавлен:
17.12.2018
Размер:
165.89 Кб
Скачать
  1. Как образуется спинно-мозговой нерв?

Спинно-мозговые нервы (nervus spinalis).

Их 31 пара => 31 сегмент спинного мозга. Тело позвоночных животных и человека на разных этапах сегментировано. Сегменты спинного мозга объединяются в 5 отделов: шейный (8) – 1-й шейный нерв выходит между мозгом и 1-м шейным позвонком, грудной (12), поясничный (5), крестцовый (5), копчиковый (1).

Cauda equina – конский хвост. Образуется корешками нижниз спинно-мозговых нервов, которые вытягиваются в длину, чтобы достигнуть соответствующих им межпозвоночных отверстий.

Каждый спинно-мозговой нерв образуется от слияния передних и задних корешков сразу сбоку от спинального ганглия в межпозвоночном отверстии, через которое нерв выходит из позвоночника.

Нерв сразу же делится на 4 ветви:

1)Ramus dorsalis – состоит их чувствительных и двигательных волокон и иннервирует кожу и мышцы спинной части соответствующего сегмента

2)Ramus ventralis – состоит из чувствительных и двигательных волокон и иннервирует кожу и мышцы брюшной части тела

3)Ramus communicance – соединительная ветвь – состоит из вегетативных волокон, которые отделяются ото всех остальных и идут у вегетативным ганглиям.

4)Ramus meningius – оболочная ветвь – состоит из вегетативныхз и чувствительных волокон, которые возвращаются в позвоночный канал и иннервирует оболочки соответствующего сегмента мозга.

Иннервация конечностей.

Конечности закладываются в онтогенезе как производные от вентральной части тела => они иннервируются только вентральными петлями спинно-мозговых нервов. В ходе онтогенеза конечности утрачивают следы своего сегментарного происхожления, поэтому вентральные ветви, идущие у ним, образуют сплетения. Сплетениея – нервные сети, в которых вентральные ветви спинно-мозговых нервов обмениваются своими волокнами и в результате из сплетений выходят нервы, каждый из которых содержит волокна от разных сегментов спинного мозга. Различают 3 сплетения:

1)шейное – образовано вентральными ветвями 1-4 пары шейных нервов, лежит рядом с шейным позвонком и иннервирует шею

2)плечевое – образовано вентральными ветвями нервов 5 шейного – 1 грудного, лежит в области ключицы и подмышечной впадины, иннервирует руки

3)пояснично-крестцовое – образовано 12 грудным – 1 копчиковым, лежит рядом с поясничным и крестцовым позвонком, иннервирует ноги

  1. Нервная ткань

Макроструктура нервной ткани

Нервная ткань => нейрон => нейроглия.

Базисной структурно-функциональной единицей нервной ткани является нейрон (от греч. Neiron – нерв), т.е. нервная клетка, обладающая высоким уровнем дифференцировки.

Первое упоминание нервной клетки относится к 1838 году и связано с именем Ремарка. Позднее, немецкий анатом Отто Дейтерс в 1865 году в своих исследованиях головного и спинного мозга человека, используя метод изоляции, нашёл, что из многочисленных отростков, отходящих от тела нервной клетки, один всегда идёт не делясь, тогда как другие многократно делятся.

Неделящийся отросток Дейтерс назвал «нервным» или «осевоцилиндрическим», а делящиеся – «протоплазматическими». Так Дейтерс сумел различить то, что мы сейчас называем аксоном и дендритами.

В конце 19 века были разработаны чрезвычайно эффективные гистологические методы, благодаря которым появилась возможность увидеть нервную клетку целиком, как если бы она была выделена из ЦНС. Изучая препараты, приготовленные по методу Гольджи, испанский учёный Сантьяго-Рамон-и-Кохал в 1909-1911 гг. заложил основы современного понимания строения нервной системы. Он доказал, что нервные клетки представляют собой структурно-обособленные трофические и функциональные единицы, и вся нервная система построена и подобных нервных единиц. Для обозначения этих клеточных единиц немецкий анатом барон Вильгельм фон Вальдейер в 1891 г. ввёл в научный оборот термин «нейрон», и учение о клеточном строении нервной системы получило название «нейронная теория».

Нервные клетки являются основным материалом мозга. Так элементарные единицы в анатомическом, генетическом и функциональном отношении, нейроны имеют те же самые гены, общее строение и тот же самый биохимический аппарат, что и другие клетки, но при этом обладают совершенно отличными от функций других клеток функциями.

Важнейшими особенностями нейронов являтся:

  • Их характерная форма

  • Способность наружной мембраны генерировать нервные имульсы

  • Наличие особой уникальной структуры синапсов, которые служат для передачи информации от одного нейрона к другому или к рабочему органу

В мозге человека имеется более 10 в 12 степени нейронов, но при этом не найдётся и двух нейронов, одинаковых по виду. Самые мелкие из нейронов находятся в коре мозжечка. Их диаметр - 4-6 микрон. Самые большие нейроны – гигантские пирамидальные клетки Беца, достигающие в диаметре 110-150 микрон. Вторые по крупности клетки – клетки Пуркинье, которые также находятся в коре мозжечка.

Классификации нейронов

Нейроны различаются:

  • Формой

  • Количеством отростков

  • Величиной аксона

  • Способами функционирования (по гистогеническим и фармакологическим реакциям).

По функциям нейроны делятся на:

  • Чувствительные (афферентные) – генерируют нервный импульс под влиянием тех или иных воздействий, осуществляя передачу раздражения от периферии к центру.

  • Вставочные (ассоциативные) – осуществляют связь между разными нейронами.

  • Двигательные (эфферентные) – передают нервный импульс к рабочим органам. Это двигательные и вегетативные нейроны.

Нейроны делятся на тело и дендриты и аксон. Первые воспринимают сигнал, второй – передаёт его дальше к другим нейронам и рабочим органам.

По количеству отростков, отходящих от тела, нейроны делятся на три типа: униполярные (клетки, имеющие один отросток; не встречаются в нервной системе млекопитающих и человека, однако некоторые авторы относят к этому типу а) специализированные омокринные нейроны сетчатки глаза и б) междукочковые нейроны обонятельной луковицы), биполярные (клетки, имеющие два отростка: аксон и дендрит, отходящие от противоположных концов клетки), в частности, псевдоуниполярные нейроны спинномозговых ганглиев и большинства чувствительных ганглиев черепных нервов, где оба клеточных отростка отходят от единого выроста клеточного тела и Т-образно делятся на два, причём дендрит и аксон похожи друг на друга, и мультиполярные нейроны (один аксон и множество дендритов).

По величине аксона нейроны различаются на короткоаксонные и длинноаксонные нейроны.

По форме тела нейроны бывают веретеновидные, грушевидные, округлые, многоугольные и так далее. Такой подход лежит в основе цитоархитектоники мозга, то есть клеточного строения мозга.

Существует определённая связь между формой нейрона и выполняемой ей функцией. Так, например, чувствительные нейроны – это в основном биполярные или псевдоуниполярные клетки веретеновидной и округлой формы. Таким образом, форма нейрона разнообразна и определяется количеством отростков, порядком их отхождения от тела и характером крепления. Но для полной характеристики нейронов и определения их положения в иерархической систематизации нервной системы, необходим комплексный подход, учитывающий морфологические, биохимические и электрофизические составляющие.

Гистологическое строение нейрона

Каждый нейрон как структурная единица нервной ткани являет собой клетку.

Три особенности нервных клеток:

  • Относительно большие размеры нервных клеток: даже у самых мелких из них линейные размеры измеряются в миллиметрах.

  • Мультиполярность и неправильная форма.

  • Локальные различия во внутренней структуре.

Каждый нейрон имеет клеточную или плазматичекую мембрану – плазмалемму, - определяющие границы индивидуальной клетки. С помощью мембраны и заключённых в ней молекулярных механизмов осуществляется взаимодействие нейрона с другими нейронами или улавливание изменений в локальной среде.

Клеточная мембрана состоит из двух слоёв липидных молекул. Липидные слои клеточных мембран во всех клетках одинаковы, а специфичность определяется мембранными белками. Мембранные белки – это ключ к пониманию функций нейрона, а следовательно и функций мозга, так как они изменяют натрий-калевые соотношения и этим обеспечивают проведение нервного импульса. Всё то, что находится внутри плазматической мембраны, исключая ядро, называется цитоплазмой. Цитоплазма состоит из основного вещества, включений и органелл. Органеллы – постоянные структуры цитоплазмы, выполняющие в клетке жизненно-важные функции.

Митохондрии обеспечивают клетку энергией. Особенно их много в местах отхождения аксона, в области перехватов Ранвье и синапса. В нейроне митохондрии осуществляют интенсивный энергетический обмен. Для митохондрии нервной клетки характерен короткий жизненный цикл, что связано с интенсивными процессами энергетического обмена. Характерной особенностью нейронов является наличие нейрофибрилл, образующих в теле нейрона густую сеть. Они состоят из микротрубочек, то есть тонких опорных структур, помогающих нейрону сохранять определённую форму и из нейрофиламентов, участвующих в сокращениях. Эти компоненты имеются и в других клетках, но для них характерна более упорядоченная структура. Нейрофибриллы имеют белковую структуру. Полагают, что они участвуют в транспорте ионов и метаболитов, а также выполняют функции опоры и сокращения. Эндоплазматический ретикулум бывает гладкий (негранулярный) и шероховатый (гранулярный). Мембраны шероховатого ретикулума усеяны рибосомами, необходимых клетке для синтеза секретируемых ею белковых веществ. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка.

В цитоплазме нейрона имеется обилие элементов шероховатого ретикулума, следовательно, нейроны – это клетки с весьма интенсивной секреторной деятельностью.

В нейронах имеются отдельные свободные рибосомы, которые собираются в полисомы или розетки. Рибосомы отсутствуют в аксонах.

Вещество Ниссля или тигроидное вещество

В нервных клетках гранулярная эндоплазматическая сеть, то есть система канальцев с рибосомами, образует хромофильную структуру, которая при световом микроскопе выявляется как тигроидное вещество или вещество Ниссля. Немецкий гистолог Ф. Ниссль, будучи студентом Мюнхенского университета, в 1884 году предложил и использовал митиленовый синий для окрашивания структур нервной ткани, что фактически ознаменовало начало новой эры нейроанатомии и нейропатологии. Вещество Ниссля располагается исключительно в перикарионе и начальных отделах дендритов, то есть в теле нейрона. Это наиболее специфический органоид нервной клетки, в котором осуществляется интенсивный синтез белков. Это гранулярная эндоплазматическая система – система канальцев с рибосомами. Здесь происходит, во-первых, интенсивный синтез белков, необходимых для жизнедеятельности нейрона и, во-вторых, синтез ферментов, поддерживающих нейронные градиенты.

Вещество Ниссля имеет самую разнообразную форму: так, например, в крупных двигательных нейронах это крупные многоугольные глыбки, заполняющие протоплазму, а в мелких чувствительных нейронах – густомелкозернистые глыбки.

Вещество Ниссля отсутствует в аксонах.

В 1888 году Гольджи, используя связи тяжёлых металлов осмия и серебра с клеточными структурами, впервые обнаружил в нервных клетках сетчатые образования, которые назвал «внутренним сетчатым аппаратом». Дальнейшее усовершенствование методов окраски металлами – импрегнации, - позволило выявить наличие аппарата Гольджи во всех клетках эукариотического организма. Он имеется во всех клетках в виде пластинок или роговых чешуек эпидермиса.

Электронно-микроскопическими исследованиями выявлено тонкое строение аппарата Гольджи. Этот сложный трёхмерный единый комплекс чашеобразной формы представлен собранными вместе диктиосомами (от греческого диктио – сеть). Диктиосома состоит из одной или нескольких стопок из трёх-десяти параллельных плотно упакованных уплощенных и слегка изогнутых мешочков, то есть цистерн, которые разделены тонкой прослойкой гиалоплазмы. Эти пространства не сообщаются друг с другом. Обычно к проксимальной части диктиосомы примыкают элементы эндоплазматической сети, а от дистальной её части отделяются секреторные гранулы. Элементы аппарата Гольджи располагаются около ядра вблизи клеточного центра и часто связаны с вакуолями, что особенно характерно для секретирующих клеток. В аппарате Гольджи накапливаются вещества, которые синтезируются в эндоплазматической сети. Здесь они гранулируются и в таком состоянии разносятся по клетке.

Мембраны гладкой эндоплазматической сети лишены полисом. Эта сеть функционально связана с обменом углеводов, жиров и других веществ небелковой природы.

В зоне диктиосомы различают проксимальный участок (или формирующийся цис-участок, включающий цистерны, обращённые к расширенным элементам гранулярной эндоплазматической сети) и небольшие транспортные пузырьки; а также дистальный (или зрелый транс-участок, образованный цистернами, обращёнными к вакуолям и секреторным гранулам).

Между цис- и транс-участками находится промежуточный участок, включающий небольшое количество цистерн. К дистальному участку диктиосомы - последней краевой цистерне прилегает так называемая транс-сеть Гольджи, состоящая из трубчатых элементов и множества мелких вакуолей. Она участвует в образовании лизосом, а также в разделении и сортировке белков для транспортных пузырьков.

Важнейшей функцией аппарата Гольджи является участие его мембранных элементов (то есть цистерн и пузырьков) в секреции и накоплении продуктов, синтезированных в эндоплазматической сети, а также в модификации (то есть химической перестройке белков), поступающих из гранулярного эндоплазматического ретикулума.

В цистернах аппарата Гольджи происходит синтез и сортировка модифицированных белков, а также упаковка секретированных продуктов в гранулы. Элементы аппарата Гольджи принимают участие в образовании лизосом, формировании клеточных мембран, в процессах выведения готовых секреторных продуктов за пределы клетки, к другим клеточным органеллам или плазматической мембране. Таким образом, в аппарате Гольджи происходит не просто перенос продуктов из одной полости в другую, но и постепенное их созревание и модификация белков, заканчивающееся сортировкой продуктов, направляющихся в лизосомы, к плазматической мембране или к секреторным вакуолям.

Следующая органелла – лизосома, которые образуются в аппарате Гольджи. Они впервые были открыты только в 1955 году. Это округлые пузырьки, окружённые мембраной. Лизосомы бывают разные по размерам и плотности. Они содержат большое количество ферментов (более 50), их функция – внутриклеточное переваривание различных химических соединений и структур. Они содержат гидролитические, то есть разрушающие ферменты и представляют защитно-литический аппарат нейрона. В зависимости от количества ферментов лизосома имеет различное окрашивание (меланин – чёрный, липофусцин – жёлтый, зелёный, серый).

Ядро – самая большая органелла, крупная, светло окрашенная, в центре клетки. В ядре находится хроматин, который является интерфазной формой существования хромосом. Хроматин в ядре находится в дисперсном состоянии и не образует хромосом, так как нервная клетка после рождения не делится. То есть ядро находится в интерфазе, а генетически-обусловленные продукты обеспечивают сохранение и изменение его функций на протяжении всей жизни.