
- •Математические методы системного анализа и теория принятия решений Методическое пособие
- •1. Теория принятия решений 4
- •2. Линейное программирование 9
- •3. Нелинейное программирование 42
- •4. Игровые методы обоснования решений 51
- •5. Задачи распознавания образов 62
- •Предисловие
- •1. Теория принятия решений
- •1.1. Задачи, связанные с принятием решений Проблема оптимальности.
- •Основные понятия и принципы исследования операций.
- •Примеры задач исследования операций.
- •1.2. Математические модели операций Искусство моделирования.
- •1.3. Разновидности задач исследования операций и подходов к их решению Прямые и обратные задачи исследования операций.
- •Пример выбора решения при определенности: линейное программирование.
- •Проблема выбора решений в условиях неопределенности.
- •Выбор решения по многим критериям.
- •«Системный подход».
- •2. Линейное программирование
- •2.1. Краткое представление о математическом программировании Предмет математического программирования.
- •Краткая классификация методов математического программирования.
- •2.2. Примеры экономических задач линейного программирования Понятие линейного программирования.
- •Задача о наилучшем использовании ресурсов.
- •Задача о выборе оптимальных технологий.
- •Задача о смесях.
- •Задача о раскрое материалов.
- •Транспортная задача.
- •2.3. Линейные векторные пространства Основные понятия линейного векторного пространства.
- •Решение систем линейных уравнений методом Гаусса.
- •Реализация метода исключения неизвестных в среде Excel.
- •Различные схемы реализации метода Гаусса.
- •Опорные решения системы линейных уравнений.
- •2.4. Формы записи задачи линейного программирования Основные виды записи злп.
- •Каноническая форма представления задачи линейного программирования.
- •Переход к канонической форме.
- •2.5. Геометрическая интерпретация задачи линейного программирования Определение выпуклой области.
- •Геометрическая интерпретация.
- •2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
- •Графический метод решения задачи линейного программирования.
- •2.7. Симплексный метод Идея симплекс-метода.
- •Теоретические обоснования симплекс-метода.
- •Переход к нехудшему опорному плану.
- •Зацикливание.
- •Алгоритм симплекс-метода.
- •2.8. Двойственность в линейном программировании Прямая и двойственная задача.
- •Связь между решениями прямой и двойственной задач.
- •Геометрическая интерпретация двойственных задач.
- •2.9. Метод искусственного базиса Идея и реализация метода искусственного базиса.
- •3. Нелинейное программирование
- •3.1. Общая задача нелинейного программирования Постановка задачи.
- •Примеры задач нелинейного программирования (экономические).
- •Геометрическая интерпретация задачи нелинейного программирования.
- •3.2. Выпуклое программирование Постановка задачи выпуклого программирования.
- •3.3. Классические методы оптимизации Метод прямого перебора.
- •Классический метод дифференциальных исчислений.
- •3.4. Метод множителей лагранжа
- •3.5. Градиентные методы решения задач нелинейного программирования Общая идея методов.
- •Метод Франка-Вулфа.
- •Метод штрафных функций.
- •4. Игровые методы обоснования решений
- •4.1. Предмет и задачи теории игр Основные понятия.
- •Классификация выборов решений.
- •Антагонистические матричные игры.
- •Чистые и смешанные стратегии и их свойства.
- •4.2. Методы решения конечных игр Упрощение матричной игры.
- •Решение матричной игры размерностью 22.
- •Графическое решение матричной игры.
- •Сведение задач теории игр к задачам линейного программирования.
- •4.3. Задачи теории статистических решений Игры с природой.
- •Критерии принятия решений.
- •5. Задачи распознавания образов
- •5.1. Общая постановка задачи распознавания образов и их классификация Проблема распознавания.
- •Обсуждение задачи опознавания.
- •Язык распознавания образов.
- •Априорные предположения — это записанные специальным образом, накопленные знания специалистов.
- •Общая постановка задачи.
- •Геометрическая интерпретация задачи распознавания.
- •Классификация задач распознавания.
- •5.2. Подготовка и анализ исходных данных Общая схема решения задачи.
- •Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
- •5.3. Методы опознавания образов Основные этапы процесса опознавания образов.
- •Методы создания системы признаков.
- •Признаковое пространство.
- •Сокращение размерности исходного описания.
- •Методы построения решающего правила.
- •5.4. Меры и метрики Понятие о сходстве.
- •Меры сходства и метрики.
- •Примеры функций мер сходства.
- •5.5. Детерминированно-статистический подход к познаванию образов Основные этапы детерминированно-статистического подхода.
- •Получение исходного описания.
- •Создание системы признаков.
- •Сокращение размерности исходного описания.
- •Нахождение решающего правила (метод эталонов).
- •Коррекция решающего правила.
- •5.6. Детерминированный метод построения решающего правила (метод эталонов) Идея метода эталонов.
- •Минимизация числа эталонов.
- •Габаритные эталоны.
- •Применение метода эталонов к частично пересекающимся образам.
- •Дополнительная минимизация числа признаков.
- •Квадратичный дискриминантный анализ.
- •Распознавание с отказами.
- •5.8. Алгоритм голотип-1 Назначение
- •Постановка задачи
- •Метод решения задачи.
- •Условия применимости.
- •Условия применимости.
- •5.10. Алгоритм направление опробования Назначение
- •Постановка задачи.
- •Метод решения задачи.
- •Условия применимости.
- •Транспортная задача Математическая постановка.
- •Постановка задачи.
- •Теоретическое введение.
- •Методы нахождения опорного плана транспортной задачи.
- •Определение оптимального плана транспортной задачи.
- •Заключение.
- •Целочисленное программирование Постановки задач, приводящие к требованию целочисленности.
- •Постановка задачи.
- •Методы отсечения.
- •Алгоритм Гомори.
- •Первый алгоритм р. Гомори решения полностью целочисленных задач.
- •Приближенные методы.
- •Заключение.
- •Параметрическое программирование Введение.
- •Формулировка задачи.
- •Теоретическая часть.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи
- •Постановка задачи.
- •Решение.
- •Геометрическое решение.
- •Решение задачи симплекс-методом.
- •Результат.
- •Некооперативные игры n лиц с ненулевой суммой Введение.
- •Теоретическая часть.
- •Постановка и решение задачи.
- •Заключение.
- •Cписок литературы
1. Теория принятия решений
1.1. Задачи, связанные с принятием решений Проблема оптимальности.
Без преувеличения можно сказать, проблема оптимальности является центральной проблемой науки, техники, да и повседневной жизни.
Чтобы ни делал человек, он пытается это сделать как можно лучше. Любые сколь-нибудь обоснованные выводы, действия или созданные устройства можно рассматривать с некоторой точки зрения как оптимальные, ибо мы предпочли их множеству других выводов, действий или устройств, т. е. посчитали их лучшими.
Основные понятия и принципы исследования операций.
Для выработки эффективного управления требуются научные методы, которые объединяются под названием «исследование операций». Под этим термином понимается применение математических, количественных методов для обоснования решений во всех областях целенаправленной человеческой деятельности. Цель, которую преследуют в процессе исследования операций, заключается в том, чтобы выявить оптимальный способ действия при решении той или иной задачи организационного управления в условиях, когда имеют место ограничения технико-экономического или какого-либо другого характера.
Под целью понимается тот конечный результат, который необходимо получить путем выбора и реализации тех или иных управляющих воздействий на исследуемую систему. При стремлении достигнуть цели возникают три задачи. Первая задача — выбор и формулировка цели. Вторая — согласование цели с имеющимися возможностями, т. е. учет ограничений. После выбора цели и учета ограничений возникает третья задача — реализация способа достижения цели при учете ограничений. Именно в третьей задаче выясняется истинная цена разнообразных математических методов оптимизации. Всякий определенный выбор зависящих от нас параметров называется решением. Оптимальными называются решения, по тем или иным признакам предпочтительные перед другими. Иногда в результате исследования удается указать одно-единственное строго оптимальное решение, чаще — выделить область практически равноценных оптимальных решений, в пределах которой может быть сделан окончательный выбор. Само принятие решения выходит за рамки исследования операций и относится к компетенции ответственного лица, которому предоставлено право окончательного выбора. Чтобы сравнивать между собой по эффективности разные решения, нужно иметь какой-то количественный критерий, так называемый показатель эффективности (его часто называют «целевой функцией»). Этот показатель выбирается так, чтобы он отражал целевую направленность операции. Наилучший вариант соответствует экстремуму показателя эффективности, т. е. минимуму или максимуму в зависимости от конкретной задачи.
Примеры задач исследования операций.
Чтобы познакомиться со спецификой науки исследования операций, рассмотрим ряд типичных для нее задач. Эти задачи, намеренно взятые из самых разных областей практики, несмотря на некоторую упрощенность постановки, и дают все же понятие о том, каков предмет и каковы цели исследования операций. Для каждого из них выберем показатель эффективности и укажем, требуется его максимизировать или минимизировать.
1. Выборочный контроль продукции. Завод выпускает определенного вида изделия. Для обеспечения их высокого качества организуется система выборочного контроля. Требуется разумно организовать контроль так, чтобы обеспечить заданный уровень качества при минимальных расходах на контроль.
Естественный показатель эффективности, подсказанный формулировкой задачи, это средние ожидаемые расходы R на контроль за единицу времени, при условии, что система контроля обеспечивает заданный уровень качества, например, средний процент брака не выше заданного (Rmin).
2. Продажа сезонных товаров. Для реализации определенной массы сезонных товаров создается сеть временных торговых точек. Требуется выбрать разумным образом: число точек, их размещение, товарные запасы и количество персонала на каждой из них так, чтобы обеспечить максимальную экономическую эффективность распродажи.
В качестве показателя эффективности можно взять среднюю ожидаемую прибыль П от реализации товаров за сезон (Пmax).
3. Противолодочный рейд. Известно, что в некотором районе морского театра военных действий находится подводная лодка противника. Группа самолетов противолодочной обороны получила задание: разыскать, обнаружить и уничтожить лодку. Требуется рационально организовать операцию: выбрать маршруты самолетов, высоту полета, способ атаки так, чтобы с максимальной уверенностью обеспечить выполнение боевого задания.
Так как рейд имеет вполне определенную цель А — уничтожение лодки, то в качестве показателя эффективности следует выбрать вероятность Р(А) того, что лодка будет уничтожена.
4. План снабжения предприятий. Имеется ряд предприятий, потребляющих известные виды сырья, и есть ряд сырьевых баз, которые могут поставлять это сырье предприятиям. Базы связаны с предприятиями какими-то путями сообщения со своими тарифами. Требуется разработать такой план снабжения предприятий сырьем (с какой базы, в каком количестве и какое сырье доставляется), чтобы потребности в сырье были обеспечены при минимальных расходах на перевозки.
Показатель эффективности R — суммарные расходы на перевозки сырья за единицу времени (Rmin).