Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ммпур методичка.DOC
Скачиваний:
114
Добавлен:
16.12.2018
Размер:
5.47 Mб
Скачать

4. Игровые методы обоснования решений

4.1. Предмет и задачи теории игр Основные понятия.

Одна из задач теории оптимальных решений — принятие решения в условиях неопределенности. Для обоснования решений разработаны специальные математические методы, которые рассматриваются в теории игр. Игровые постановки вопросов возникают в самых разнообразных случаях. Например, при эксплуатации природных ресурсов мы нередко сталкиваемся с тем, что ввиду неполноты наших сведений мы должны в ограниченные сроки принимать решения о путях хозяйственного использования природных возможностей при неполностью известных обстоятельствах. Здесь создается такая ситуация: наши действия могут привести в будущем к ущербу, если эти неизвестные обстоятельства окажутся неблагоприятными; требуется установить такой комплекс действий, при которых ущерб, могущий быть вызванным неизвестными обстоятельствами, не превышал бы известных пределов, а хозяйственный эффект был бы оптимальным. Подобная постановка складывается при планировании народного хозяйства в новых условиях, созданных либо новыми достижениями науки и техники, либо необходимостью освоения новых районов. Аналогичные ситуации имеют место и при борьбе с эпидемическими болезнями, при использовании токсических веществ в лекарственных целях и т. п.

Теория игр представляет собой математическую теорию конфликтных ситуаций. Ее цель — выработка рекомендаций по разумному поведению участников конфликта.

Конфликтными называются ситуации, в которых сталкиваются интересы двух (или более) сторон, преследующих разные (иногда противоположные) цели, причем выигрыш каждой стороны зависит от того, как себя поведут другие. Примеры конфликтных ситуаций многообразны. К ним принадлежит любая ситуация, складывающаяся в ходе боевых действий, ряд ситуаций в области экономики, судопроизводства, а также в спорте. В некотором смысле конфликтной можно считать и ситуацию с несколькими критериями: каждый из них предъявляет к управлению свои требования и, как правило, эти требования противоречивы.

Каждая непосредственно взятая из практики конфликтная ситуация очень сложна и ее анализ затруднен наличием многих несущественных факторов. Чтобы сделать возможным математический анализ конфликта, строится его математическая модель. Такую модель называют игрой.

От реального конфликта игра отличается тем, что ведется по определенным правилам. Эти правила указывают «права и обязанности» участников, а также исход игры — выигрыш или проигрыш каждого участника в зависимости от сложившейся обстановки. Человечество издавна пользуется такими формализованными моделями конфликтов — «играми» в буквальном смысле слова (шашки, шахматы, карточные игры и т.п.). Отсюда и название теории игр, и ее терминология: конфликтующие стороны условно называются игроками, одно осуществление игры — партией, исход игры — выигрышем или проигрышем. Мы будем считать, что выигрыши (проигрыши) участников имеют количественное выражение (если это не так, то всегда можно им его приписать, например, в шахматах считать выигрыш за единицу, проигрыш — за минус единицу, ничью — за нуль).

В игре могут сталкиваться интересы двух или более участников; в первом случае игра называется парной, во втором — множественной.

Развитие игры во времени можно представлять как ряд последовательных ходов участников. Ходом называется выбор игроком одного из предусмотренных правилами игры действий и его осуществление. Ходы бывают личные и случайные. При личном ходе игрок сознательно выбирает и осуществляет тот или другой вариант действий (пример — любой ход в шахматах). При случайном ходе выбор осуществляется не волей игрока, а каким-то механизмом случайного выбора (бросание монеты, игральной кости, вынимание карты из колоды и т.п.). Некоторые игры (так называемые чисто азартные) состоят только из случайных ходов — ими теория игр не занимается. Ее цель — оптимизация поведения игрока в игре, где (может быть, наряду со случайными) есть личные ходы. Такие игры называются стратегическими.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе в зависимости от сложившейся ситуации.

Обычно, участвуя в игре, игрок не следует каким-либо жестким, «железным» правилам: выбор (решение) принимается им в ходе игры, когда он непосредственно наблюдает ситуацию. Однако теоретически дело не изменится, если предположить, что все эти решения приняты игроком заранее («если сложится такая-то ситуация, я поступлю так-то»). Это будет значить, что игрок выбрал определенную стратегию. Теперь он может и не участвовать в игре лично, а передать список правил незаинтересованному лицу — судье. Стратегия может быть задана машине-автомату в виде программы (именно так играют в шахматы ЭВМ).

В зависимости от числа стратегий игры делятся на конечные и бесконечные. Игра называется конечной, если у каждого игрока имеется в распоряжении только конечное число стратегий (в противном случае игра называется бесконечной). Бывают игры (например, шахматы), где в принципе число стратегий конечно, но так велико, что полный их перебор практически невозможен.

Оптимальной стратегией игрока называется такая, которая обеспечивает ему наилучшее положение в данной игре, т. е. максимальный выигрыш. Если игра повторяется неоднократно и содержит, кроме личных, еще и случайные ходы, оптимальная стратегия обеспечивает максимальный средний выигрыш.

Задача теории игр — выявление оптимальных стратегий игроков. Основное предположение, исходя из которого находятся оптимальные стратегии, состоит в том, что противник (в общем случае — противники) по меньшей мере так же разумен, как и сам игрок, и делает все для того, чтобы добиться своей цели. Расчет на разумного противника — лишь одна из возможных позиций в конфликте, но в теории игр именно она кладется в основу.

Игра называется игрой с нулевой суммой, если сумма выиграшей всех игроков равна нулю (т.е. каждый игрок выигрывает только за счет других). Самый простой случай — парная игра с нулевой суммой — называется антагонистической. Теория антагонистических игр — наиболее развитый раздел теории игр, с четкими рекомендациями. Ниже мы познакомимся с некоторыми ее понятиями и приемами.

Теория игр, как и всякая математическая модель, имеет свои ограничения. Одним из них является предположение о полной («идеальной») разумности противника. В реальном конфликте зачастую оптимальная стратегия состоит в том, чтобы угадать, в чем противник «глуп», и воспользоваться этой глупостью в свою пользу. Схемы теории игр не включают элементов риска, неизбежно сопровождающего разумные решения в реальных конфликтах. В теории игр выявляется наиболее осторожное, «перестраховочное» поведение участников конфликта. Сознавая эти ограничения и поэтому не придерживаясь слепо рекомендаций, полученных игровыми методами, можно все же разумно использовать аппарат теории игр как «совещательный» при выборе решения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]