
- •Математические методы системного анализа и теория принятия решений Методическое пособие
- •1. Теория принятия решений 4
- •2. Линейное программирование 9
- •3. Нелинейное программирование 42
- •4. Игровые методы обоснования решений 51
- •5. Задачи распознавания образов 62
- •Предисловие
- •1. Теория принятия решений
- •1.1. Задачи, связанные с принятием решений Проблема оптимальности.
- •Основные понятия и принципы исследования операций.
- •Примеры задач исследования операций.
- •1.2. Математические модели операций Искусство моделирования.
- •1.3. Разновидности задач исследования операций и подходов к их решению Прямые и обратные задачи исследования операций.
- •Пример выбора решения при определенности: линейное программирование.
- •Проблема выбора решений в условиях неопределенности.
- •Выбор решения по многим критериям.
- •«Системный подход».
- •2. Линейное программирование
- •2.1. Краткое представление о математическом программировании Предмет математического программирования.
- •Краткая классификация методов математического программирования.
- •2.2. Примеры экономических задач линейного программирования Понятие линейного программирования.
- •Задача о наилучшем использовании ресурсов.
- •Задача о выборе оптимальных технологий.
- •Задача о смесях.
- •Задача о раскрое материалов.
- •Транспортная задача.
- •2.3. Линейные векторные пространства Основные понятия линейного векторного пространства.
- •Решение систем линейных уравнений методом Гаусса.
- •Реализация метода исключения неизвестных в среде Excel.
- •Различные схемы реализации метода Гаусса.
- •Опорные решения системы линейных уравнений.
- •2.4. Формы записи задачи линейного программирования Основные виды записи злп.
- •Каноническая форма представления задачи линейного программирования.
- •Переход к канонической форме.
- •2.5. Геометрическая интерпретация задачи линейного программирования Определение выпуклой области.
- •Геометрическая интерпретация.
- •2.6. Свойства решений задачи линейного программирования Свойства основной задачи линейного программирования.
- •Графический метод решения задачи линейного программирования.
- •2.7. Симплексный метод Идея симплекс-метода.
- •Теоретические обоснования симплекс-метода.
- •Переход к нехудшему опорному плану.
- •Зацикливание.
- •Алгоритм симплекс-метода.
- •2.8. Двойственность в линейном программировании Прямая и двойственная задача.
- •Связь между решениями прямой и двойственной задач.
- •Геометрическая интерпретация двойственных задач.
- •2.9. Метод искусственного базиса Идея и реализация метода искусственного базиса.
- •3. Нелинейное программирование
- •3.1. Общая задача нелинейного программирования Постановка задачи.
- •Примеры задач нелинейного программирования (экономические).
- •Геометрическая интерпретация задачи нелинейного программирования.
- •3.2. Выпуклое программирование Постановка задачи выпуклого программирования.
- •3.3. Классические методы оптимизации Метод прямого перебора.
- •Классический метод дифференциальных исчислений.
- •3.4. Метод множителей лагранжа
- •3.5. Градиентные методы решения задач нелинейного программирования Общая идея методов.
- •Метод Франка-Вулфа.
- •Метод штрафных функций.
- •4. Игровые методы обоснования решений
- •4.1. Предмет и задачи теории игр Основные понятия.
- •Классификация выборов решений.
- •Антагонистические матричные игры.
- •Чистые и смешанные стратегии и их свойства.
- •4.2. Методы решения конечных игр Упрощение матричной игры.
- •Решение матричной игры размерностью 22.
- •Графическое решение матричной игры.
- •Сведение задач теории игр к задачам линейного программирования.
- •4.3. Задачи теории статистических решений Игры с природой.
- •Критерии принятия решений.
- •5. Задачи распознавания образов
- •5.1. Общая постановка задачи распознавания образов и их классификация Проблема распознавания.
- •Обсуждение задачи опознавания.
- •Язык распознавания образов.
- •Априорные предположения — это записанные специальным образом, накопленные знания специалистов.
- •Общая постановка задачи.
- •Геометрическая интерпретация задачи распознавания.
- •Классификация задач распознавания.
- •5.2. Подготовка и анализ исходных данных Общая схема решения задачи.
- •Общая схема постановки и решения задачи Анализ данных с целью выбора постановки и метода решения
- •5.3. Методы опознавания образов Основные этапы процесса опознавания образов.
- •Методы создания системы признаков.
- •Признаковое пространство.
- •Сокращение размерности исходного описания.
- •Методы построения решающего правила.
- •5.4. Меры и метрики Понятие о сходстве.
- •Меры сходства и метрики.
- •Примеры функций мер сходства.
- •5.5. Детерминированно-статистический подход к познаванию образов Основные этапы детерминированно-статистического подхода.
- •Получение исходного описания.
- •Создание системы признаков.
- •Сокращение размерности исходного описания.
- •Нахождение решающего правила (метод эталонов).
- •Коррекция решающего правила.
- •5.6. Детерминированный метод построения решающего правила (метод эталонов) Идея метода эталонов.
- •Минимизация числа эталонов.
- •Габаритные эталоны.
- •Применение метода эталонов к частично пересекающимся образам.
- •Дополнительная минимизация числа признаков.
- •Квадратичный дискриминантный анализ.
- •Распознавание с отказами.
- •5.8. Алгоритм голотип-1 Назначение
- •Постановка задачи
- •Метод решения задачи.
- •Условия применимости.
- •Условия применимости.
- •5.10. Алгоритм направление опробования Назначение
- •Постановка задачи.
- •Метод решения задачи.
- •Условия применимости.
- •Транспортная задача Математическая постановка.
- •Постановка задачи.
- •Теоретическое введение.
- •Методы нахождения опорного плана транспортной задачи.
- •Определение оптимального плана транспортной задачи.
- •Заключение.
- •Целочисленное программирование Постановки задач, приводящие к требованию целочисленности.
- •Постановка задачи.
- •Методы отсечения.
- •Алгоритм Гомори.
- •Первый алгоритм р. Гомори решения полностью целочисленных задач.
- •Приближенные методы.
- •Заключение.
- •Параметрическое программирование Введение.
- •Формулировка задачи.
- •Теоретическая часть.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи.
- •Общая постановка задачи.
- •Решение задачи.
- •Геометрическая интерпретация задачи
- •Постановка задачи.
- •Решение.
- •Геометрическое решение.
- •Решение задачи симплекс-методом.
- •Результат.
- •Некооперативные игры n лиц с ненулевой суммой Введение.
- •Теоретическая часть.
- •Постановка и решение задачи.
- •Заключение.
- •Cписок литературы
Переход к нехудшему опорному плану.
Т е о р е м а
3. Если k<0
для некоторого j=k и среди чисел aik
()нет
положительных, то целевая функция ЗЛП
не ограничена на множестве ее планов.
Т е о р е м а 4. Если опорный план Х ЗЛП не вырожден и k<0, но среди чисел aik есть положительные ( не все aik<0), то существует опорный план X’ такой, что Z(X’)>Z(X).
Сформулированные теоремы позволяют проверить, является ли найденный опорный план оптимальным, и выявить целесообразность перехода к новому опорному плану.
Исследование опорного плана на оптимальность, а также дальнейший вычислительный процесс удобнее вести, если условия задачи и первоначальные данные, полученные после определения исходного опорного плана, записать так, как показано в табл.1
табл.1
|
с1 |
с2 |
... |
сi |
... |
сm |
cm+1 |
... |
cj |
... |
cn |
|||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Базис |
Сб |
А0 |
A1 |
A2 |
... |
Ai |
... |
Am |
Am+1 |
... |
Aj |
... |
An |
|||
A1 |
с1 |
b1 |
1 |
0 |
... |
0 |
... |
0 |
a1,m+1 |
... |
a1,j |
... |
a1,n |
|||
A2 |
с2 |
b2 |
0 |
1 |
... |
0 |
... |
0 |
a2,m+1 |
... |
a2,j |
... |
a2,n |
|||
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
|||
Ai |
сi |
bi |
0 |
0 |
... |
1 |
... |
0 |
ai,m+1 |
... |
ai,j |
... |
ai,n |
|||
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
|||
Am |
сm |
bm |
0 |
0 |
... |
|
... |
1 |
am,m+1 |
... |
am,j |
... |
am,n |
|||
Zj-cj |
0 |
0 |
0 |
... |
0 |
... |
0 |
m+1 |
... |
j |
... |
n |
Зацикливание.
Зацикливание возможно только для вырожденных планов, т. е. на одной из итераций одна или несколько переменных опорого плана могут оказаться равными нулю, тогда возможен возврат к первоначальному базису. Теория и практика показывают, что зацикливание возникает при весьма маловероятном сочетании условий. При появлении цикла следует изменить послелдовательность вычислений путем изменения выбора разрешающего столбца. Другой способ рекомендует изменить выбор разрешающей строки.
Алгоритм симплекс-метода.
Симплекс-алгоргоритм состоит из следующих шагов. Итак, нахождение оптимального плана симплексным методом включает следующие этапы:
1. Находят опорный план.
2. Составляют симплекс-таблицу.
3. Выясняют, имеется ли хотя бы одно положительное число j . Если нет, то найденный план оптимален. Если же среди чисел j имеются положительные, то либо устанавливают неразрешимость задачи, либо переходят к новому опорному плану.
4. Находят разрешающие столбец и строку. Разрешающий столбец определяется наибольшим по абсолютной величине положительным числом j , а разрешающая строка — минимальным из отношений компонент столбца вектора А0 к положительным компонентам разрешающего столбца.
5. Определяют положительные компоненты нового опорного плана, коэффициенты разложения векторов Аi по векторам нового базиса и числа 0 и j.Все эти числа записываются в новой симплекс-таблице.
6. Проверяют найденный опорный план на оптимальность. Если план не оптимален и необходимо перейти к новому опорному плану, то возвращаются к этапу 4, а в случае получения оптимального плана или установления неразрешимости процесс решения задачи заканчивают.
Контроль: 1) все таблицы должны содержать положительные компоненты.
2) Оценки при базисных векторах всегда нулевые.
3) Последующие значения целевой функции меньше предыдущих.