
- •2) Химические свойства оснований в свете теории электролитической диссоциации.
- •3) Хим. Свойства кислот в свете теории электр. Диссоциации.
- •4) Хим. Свойства солей в свете теории электр. Диссоциации.
- •5) Возникновение и развитие атомно - молекулярного учения.
- •6) Закон сохранения массы и энергии. Закон постоянства веществ. Закон эквивалентов. Закон авогадро.
- •7) Основные понятия химии: атом, молекула, хим. Элемент, вещество.
- •8) Модели строения атома: модель резерфорда, теория бора.
- •9) Открытие периодического закона . Периодическая система химических элементов:структура, периодическое изменение свойств элементов по периодам и группам.
- •10)Химическая связь. Основные виды химической связи.
- •11) Основные характеристики химической связи: длинна связи, энергия связи, валентные углы, полярность, дипольный момент, степень ионности, степень окисления.
- •13) Электронные структуры атомов элементов : энергетические уровни и подуровни электронов в атоме.
- •2. Кислотные и оснόвные оксиды
- •18) Ионно -обменные реакции. Условия необратимости ионно-обменных реакций. Ионно-обменные реакции между ионами в растворах электролитов.
- •21) Растворы, классификация и свойства растворов. Основные свойства растворов и их классификация
- •22)Способы выражения концентрации растворов.Способы выражения концентрации растворов
- •Пересчет концентраций растворов из одних единиц в другие
- •Упаривание раствора
- •Концентрирование раствора
- •Смешивание растворов с разными концентрациями
- •Разбавление раствора
- •23) Гидролиз солей . Ионное произведение воды , рН растворов.
- •Кислота или щелочь?
- •24)Электролиз. Применение электролиза.
- •25)Комплексные соединения. Координационная теория Вернера . Номеклатура комплексных соеденений . Классификация коплексных соединений .
- •1. КоординационнАя теориЯ Вернера
- •1. 1. Основные понятия координационной теории Вернера
- •1. 2. Определение заряда основных частиц комплексного соединения
- •1. 3. Номенклатура комплексных соединений
- •26) Понятие о химической термодинамике. Экзо- и эндотермические реакции. Применение электролиза в технике
- •Ионное произведение воды. PH раствора
- •Способы выражения концентрации растворов
- •Пересчет концентраций растворов из одних единиц в другие
- •Концентрирование раствора
- •Смешивание растворов с разными концентрациями
- •Разбавление раствора
- •Основные свойства растворов и их классификация
- •Классификация органических соединений
- •История развития органической химии
- •Строение органических соединений
- •Общая характеристика реакций органических соединений
- •Возникновение органических соединений
- •[Править] История
- •[Править] Классификация органических соединений
- •[Править] Правила и особенности классификации
- •[Править] Основные классы органических соединений
- •[Править] Строение органических молекул
- •[Править] Строение органического вещества
- •[Править] Особенности органических реакций
- •[Править] Определение структуры органических соединений
[Править] Классификация органических соединений
Подробно рассмотрена в статье «Органические соединения».
[Править] Правила и особенности классификации
В основе классификации лежит структура органических соединений. Основа описания структуры — структурная формула. Атомы элементов обозначаются латинскими символами, как они обозначены в периодической таблице химических элементов (таблице Менделеева). Водородные и электронодефицитные связи обозначаются пунктирной линией, ионные связи обозначаются указанием зарядов частиц, входящих в состав молекулы. Поскольку в подавляющее большинство органических молекул входит водород, его обычно не обозначают при изображении структуры. Таким образом, если в структуре у одного из атомов изображена недостаточная валентность, значит, возле этого атома расположен один или несколько атомов водорода.
Атомы могут образовывать циклические и ароматические системы.
[Править] Основные классы органических соединений
-
Углеводороды — соединения, состоящие только из атомов углерода и водорода. Они в свою очередь делятся на:
-
Насыщенные — не содержат кратные связи в своей структуре.
-
Ненасыщенные — имеют в своём составе хотя бы одну двойную и/или тройную связь.
-
С открытой цепью
-
С замкнутой цепью — содержат цикл
-
К ним относятся алканы, алкены, алкины, диены, циклоалканы, арены.
-
Соединения с гетероатомами в функциональных группах — соединения, в которых углеродный радикал R связан с функциональной группой. По характеру функциональных групп делятся на:
-
Галогенсодержащие
-
Спирты, фенолы
-
Простые эфиры (этеры)
-
Сложные эфиры (эстеры)
-
Соединения, содержащие карбонильную группу
-
Альдегиды
-
Кетоны
-
Хиноны
-
-
Соединения, содержащие карбоксильную группу (Карбоновые кислоты, сложные эфиры)
-
Серосодержащие соединения
-
Азотсодержащие соединения
-
Металлоорганические соединения
-
-
Гетероциклические — содержат гетероатомы в составе кольца. Различаются по числу атомов в цикле, по виду гетероатома, по количеству гетероатомов в цикле.
-
Органического происхождения — как правило соединения очень сложной структуры, зачастую принадлежат сразу к нескольким классам органических веществ, часто полимеры. Из-за этого их сложно классифицировать и их выделяют в отдельный класс веществ.
-
Полимеры — вещества очень большой молекулярной массы, которые состоят из периодически повторяющихся фрагментов — мономеров.
[Править] Строение органических молекул
Органические молекулы в основном образованы ковалентными неполярными связями C—C, или ковалентными полярными типа C—O, C—N, C—Hal. Согласно октетной теории Льюиса и Косселя молекула является устойчивой, если внешние орбитали всех атомов полностью заполнены. Для таких элементов как C, N, O, Галогены необходимо 8 электронов, чтобы заполнить внешние валентные орбитали, для водорода необходимо только 2 электрона. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома.
Классическая теория валентных связей не в состоянии объяснить все типы связей, существующие в органических соединениях, поэтому современная теория использует методы молекулярных орбиталей и квантовохимические методы.