Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Електрика (лекції).doc
Скачиваний:
22
Добавлен:
10.12.2018
Размер:
9.05 Mб
Скачать

Закони Кірхгофа

В загальному випадку закони Кірхгофа – це узагальнення закону Ома.

1) Вираз закону збереження заряду: Алгебраїчна сума струмів у вузлі дорівнює нулю. Вузол – це точка де з’єднується не менше двох провідників.

Fig 36

  1. Узагальнення закону Ома для повного кола.

Fig 37

В довільному замкнутому контурі взятому в межах кола алгебраїчна сума спадів напруг дорівнює сумі електрорушійних сил, що діють в цьому контурі .

Застосуємо правила Кірхгофа для схеми представленої на рисунку 9 :

Перший закон:

Другий закон:

Правила Кірхгофа дозволяють розраховувати електричний струм і напругу в складних електричних колах.

Природа електричних струмів в різних речовинах Метали

При температурі – питомий опір металів лінійно залежить від , таким чином: , де – питомий опір при , .

Fig 38

Фізичний зміст коефіцієнта – температурний коефіцієнт опору. Показує відносну зміну опору при зміні температури на . В більш широкому діапазоні температур не можна вважати сталим, бо температурна залежність опору металів не завжди лінійна: . – абсолютна температура в шкалі Кельвіна.

Якщо побудувати залежність питомого опору від температури, то при температурах нижчих за певну температуру Дебая (для кожного металу своя) опір металу еквівалентний , а при температурах вищих за температуру Дебая () – еквівалентний .

а б

Fig 39-40

а) При , (опір прямує до залишкового по закону );

б) При критичній температурі опір падає до нуля і маємо стан надпровідності.

На сьогоднішній день вважається, що перенос заряду в металах здійснюється в основному електронами. На початку минулого століття Рікі поставив дослід: три циліндри з різних металів поставили в холод, щоб не було дифузії і протягом року пропускали струм. За цей час пройшов заряд Кл Виявилось, що не було ніякого проникнення металу в метал. Так прийшли до висновку, що носіями струму в металі не можуть бути іони металу. З’явилась думка, що носіями струму можуть бути вільні електрони.

Fig 41-42

Було проставлено досліди по визначенню питомого заряду носіїв струму в металі і з них виявили, що носіями є електрони, вони практично можуть вільно переміщатись в металі. Їхній питомий заряд : . Зразок металу рухаємо з великою швидкістю , а потім швидко (різко) гальмуємо. Внаслідок цього носії струму всередині зразка рухаються по інерції, тобто по зразку протікає струм (котушка і токарний верстат, крутильні коливання перехід в змінний струм).

Друде і Лоренц створили першу класичну теорію провідності металів.

Класична теорія провідності металів та її недоліки.

Згідно з теорію Друде-Лоренца валентні електрони атомів металів відриваються від своїх атомів, стають спільними для всього зразка і можуть практично вільно переміщуватись в металі. Якщо прикласти зовнішнє поле напруженістю , то на електрони діє сила і під дією цієї сили вони рухаються з прискоренням . Вважається, що кожен електрон пролітає в середньому відстань до наступного зіткнення з кристалічною граткою. – середня довжина вільного пробігу. Вважається, що після зіткнення з граткою електрон втрачає швидкість напрямленого руху. Тобто в момент удару швидкість напрямленого руху електрона максимальна:

де – час між двома послідовними зіткненнями.

– середня швидкість напрямленого руху носіїв.

Fig 43

Таким чином, густина струму в металі:

Час вільного пробігу можна знайти наступним чином: крім напрямленого руху електрони постійно перебувають в хаотичному русі. Середня швидкість хаотичного руху:

– стала Больцмана, – абсолютна температура.

Відомо, що Тому визначається в основному тепловим рухом, час між двома послідовними зіткненнями

Друде і Лоренц пояснили чому при протіканні струму виділяється тепло. Вважалось, що при зіткненні з граткою електрон повністю втрачає напрямлену складову швидкості, тобто при кожному ударі віддає таку порцію енергії гратці: за 1 с електрон зазнає зіткнень. Таким чином, електронів виділяють в одиниці об’єму енергію:

Тобто теорія Друде-Лоренца добре пояснила закон Джоуля – Ленца.

Проте, незважаючи на всі переваги ця модель мала ряд неточностей:

  1. Виявилось, що модель, використана в теорії Друде –Лоренца не знала як правильно пояснити температурну залежність опору металів:

  2. Для того, щоб виходили розумні значення треба було, щоб,Ǻ де 1 Ǻ =10-10 м. В той час, як відстань між сусідніми атомами рівна Ǻ.

При такому густому розміщенні атомів для того, щоб пройти відстань Ǻ електрон повинен пролітати біля декількох сотень атомних відстаней без зіткнень, що малоймовірно.

  1. Теорія не зуміла пояснити так звану електронну теплоємність.

  2. Теорія не могла припустити існування явища надпровідності.

  3. З точки зору даної теорії не можна було пояснити властивості напівпровідників і діелектриків.

Все це привело до потреби створення більш досконалої теорії, зокрема в 30-х р. минулого століття Зоммерфельд використав поняття електронних хвиль і з допомогою цього підходу розв’язав більшість проблем, пов’язаних з теорією металів. Зокрема пояснив температурну провідність металів, високе значення, а також електронну теплоємність металів.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]