
- •1. Химические явления. Место химии в ряду естественных наук.
- •2.Основные понятия химии (химический элемент; атом; молекула и фаза; простое и сложное вещество; мономеры, олигомеры и полимеры).
- •3.Закон сохранения материи. Закон сохранения массы. Неорганические вещества с молекулярной структурой (дальтониды) и немолекулярной (бертоллиды)
- •4.Закон постоянства состава, закон постоянства свойств, закон кратных отношений, закон эквивалентов.
- •5.Закон Авогадро и его следствия.
- •18.Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •6.Основные классы химических соединений. Кислотно-основные свойства веществ (оксиды, гидроксиды). Явление амфотерности.
- •Кислотно-основные свойства оксидов
- •Кислотно-основные свойства гидроксидов
- •7. Два принципа квантовой механики (корпускулярно-волновой дуализм и принцип неопределенности). Уравнение Шредингера.
- •8. Квантово-механическая модель строения атома водорода. Собственная функция уравнения Шредингера (орбиталь) и связанные с ней квантовые числа.
- •9. Электронное облако: форма и ориентация в пространстве. Энергетические состояния электрона в атоме водорода
- •10. Понятие энергетического уровня и подуровня. Спиновое квантовое число.
- •11. Энергетические состояния электронов в многоэлектронных атомах и принципы их заполнения: принцип Паули, правило Хунда, правило Клечковского.
- •13.Реакционная способность веществ: химия и Периодическая система д. И. Менделеева. Сущность закона периодичности.
- •14.Энергия ионизации, сродство к электрону, электроотрицательность и атомные радиусы. Изменение этих величин в Периодической системе.
- •15.Химическая связь. Понятие химической связи.
- •16. Метод валентных связей (метод Гайтлера-Лондона), его основные положения и выводы.
- •Основные понятия мвс
- •Недостатки мвс
- •20.Кратность связи. Ограниченность метода валентных связей.
- •17.Ковалентная связь, ее пространственная направленность и насыщенность. Валентные возможности атомов в нормальном и возбужденном состоянии.
- •19.Энергия связи и длина связи. Неполярная и полярная ковалентная химическая связь. Электроотрицательность элементов. Дипольный момент связи и молекулы.
- •21.Метод молекулярных орбиталей, его основные положения и выводы.
- •22.Типы молекулярных орбиталей. Рассмотрение одноатомных и разноатомных молекул.
- •24.Гибридизация атомных молекул, их геометрическое строение
- •50.Растворы электролитов. Изотонический коэффициент.
- •27.Первое начало термодинамики. Теплота и работа.
- •28.Энергетика химических процессов. Внутренняя энергия и энтальпия.
- •30.Тепловой эффект химических реакций. Стандартное состояние вещества.
- •29.Применение первого начала термодинамики к химическим явлениям.
- •31.Закон Гесса и его следствия. Термохимия.
- •32.Второе начало термодинамики. Термодинамический процесс и его конечный результат. Состояние термодинамического равновесия.
- •33. Самопроизвольные и несамопроизвольные, обратимые и необратимые процессы. Энтропия. Направленность термодинамического процесса
- •34.Критерий направленности процесса в закрытой системе. Энергия Гиббса.
- •36.Методы регулирования скорости реакции. Влияние концентрации реагирующих веществ на скорость реакции.
- •37. Закон действующих масс для гетерогенных реакций.
- •47.Растворы неэлектролитов. Идеальный раствор.
- •38.Зависимость скорости реакции от температуры. Уравнение Аррениуса. Правило Вант-Гоффа.
- •39. Энергия и энтропия активации реакции. Гомогенный и гетерогенный катализ. Активированный комплекс. Энергетическая диаграмма реакции.
- •40.Химически обратимые реакции. Химическое равновесие с точки зрения кинетики.
- •41.Константа химического равновесия и его смещение. Принцип ЛеШателье.
- •43.Цепные разветвленные и неразветвленные химические реакции. Колебательные реакции.
- •44.Растворы. Химические системы: растворы, дисперсные системы.
- •45.Определение и классификация растворов. Способы выражения концентрации растворов.
- •46.Растворимость. Насыщенные и пересыщенные растворы.
- •48.Закон Рауля и его следствия. Замерзание и кипение растворов.
- •49.Закон Вант-Гоффа. Осмос. Осмотическое давление.
- •51.Теория электролитической диссоциации.
- •58. Условие выпадения осадка в растворах.
- •59. Степень окисления элемента. Понятие окислительно-восстановительной реакции.
- •64.Скачок потенциала на границе раздела металл-раствор. Двойной электрический слой.
- •60. Окислительно-восстановительные свойства веществ. Окислитель и восстановитель как сопряженная система.
- •62.Методы электронного и ионно-электронного баланса.
- •63.Виды окислительно-восстановительных реакций (окислитель и восстановитель, разные вещества, диспропорционирование, внутримолекулярное окисление- восстановление.)
- •65.Электрохимическая система. Электродный и Окислительно-восстановительный потенциал электрохимической системы и его стандартное значение.
- •66.Уравнение Нернста.
- •67. Нормальный водородный электрод.
- •68.Гальвонический элемент Даниэля-Якоби.
- •69.Критерий направленности Окислительно-восстановительной реакции на примере реакций коррозии металлов в растворах кислот, растворах щелочей и солей, воды.
- •71.Взаимодействие металлов с азотной кислотой
- •73.Методы защиты от коррозии
- •72.Взаимодействие металлов с разбавленной и концентрированной серной кислотой
- •74.Электролиз и его законы
- •75 .Электрохимические процессы в расплавах и растворах электролитов
- •78.Химическая идентификация. Химический, физико-химический, физический анализ.
- •79. Качественный химический анализ. Специфические реакции на ионы.
- •80.Объемный и весовой количественные анализы
- •77.Электролитическая коррозия металлов и защита от нее.
- •76 .Процессы на электродах. Перенапряжение
29.Применение первого начала термодинамики к химическим явлениям.
ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА, рассматривает взаимосвязи между работой и энергией применительно к химическим превращениям. Поскольку химическое превращение обычно сопровождается высвобождением или поглощением определенного количества теплоты, оно, как и другие явления природы (в том числе электрические и магнитные), сопровождающиеся тепловыми эффектами, подчиняется фундаментальным принципам (началам) термодинамики. Химическая термодинамика определяет, в первую очередь, условия (такие, как температура и давление) протекания химических реакций и равновесных состояний, которых они достигают. Анализ тепловых явлений базируется на трех фундаментальных принципах, подтвержденных данными многочисленных наблюдений.
Первое начало
термодинамики по существу выражает
закон сохранения энергии. Для системы,
окруженной замкнутой границей, через
которую не происходит переноса
вещества, справедливо соотношение
где U1 и U2 — энергии системы в состояниях 1 и 2; Q — теплота, полученная от внешних источников; W — работа, совершенная системой над внешними телами в процессе, посредством которого система переходит из состояния 1 в состояние 2. Если процесс — химическая реакция, то обычно ее проводят в таких условиях, чтобы можно было отделить энергию химического превращения от энергии, связанной с одновременными изменениями температуры или давления. Поэтому энергию (теплоту) химической реакции обычно определяют в условиях, в которых продукты находятся при тех же температуре и давлении, что и реагенты. Энергия химической реакции тогда определяется теплотой Q, полученной от окружающей cреды или переданной ей. Измерение Q может быть проведено с помощью калориметра подходящего типа. Реакцию можно было бы провести, например, в металлическом сосуде, погруженном в теплоизолированный объем воды, изменение температуры которой (обычно на несколько градусов) соответствует теплоте реакции. Для количественных измерений калориметр обычно градуируют с помощью независимого электронагревателя или проведения в сосуде химической реакции, теплота которой известна.
31.Закон Гесса и его следствия. Термохимия.
Закон Гесса: тепловой эффект хим. реакции не зависит от промежуточных стадий процесса, а определяется только начальным и конечным состоянием системы.
С помощью этого закона можно рассчитать энтальпии образования веществ, которые невозможно измерить.
Следствия из закона Гесса:
1)Теплота образования 1 моля в-ва из простых в-в при заданных температуре и давлении есть величина постоянная.
2)Тепловой эффект химической реакции (∆Н) равен разности между суммой энтальпий образования продуктов реакции и суммой энтальпий образования исходных веществ, взятых с учётом коэффициентов в уравнении реакции.
Термохимия – раздел химии, посвящённый количественному изучению тепловых эффектов реакций. Важнейшей величиной в термохимии является стандартная теплота образования. Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю. В термохимии часто используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.