
- •1.Строение атома и атомного ядра. Изотопы
- •Квантовый характер излучения и поглощения энергии атомом. Уравнение Планка. Постулаты Бора.
- •Постулаты Бора
- •2.Атомные орбитали. Форма орбиталей. Многоэлектронные атомы. Принцип Паули. Правило Хунда .
- •Электронные конфигурации атомов
- •8. Связь периодической системы со строением атома
- •9. Структура периодической системы
- •10.Современная формулировка периодического закона. Периодичность изменения свойств элементов в периодах и группах на примере ряда элементов Al-Si-p-As-Sb (Be-Mg-Ca-Sc-Ti-V; p-s-Cl-Br-I; n-p-As-Se-Br).
- •11.Изменение кислотно-основных свойств соединений типа э-о-н по периодам и группам периодической системы. Периодический закон д. И. Менделеева
- •Физический смысл химической периодичности
- •Параметры ковалентной связи
- •Длина химической связи
- •Валентные углы
- •Энергия ковалентной связи
- •Вопрос 18
- •4.5.1. Самопроизвольные процессы
- •4.5.2 Энтропия
- •4.5.3. Расчет изменений энтропии
- •4.5.4. Направление химических реакций в изолированных системах. Второй закон термодинамики
- •4.5.5. Направление химических реакций в неизолированных системах. Энтальпийный и энтропийный факторы химических реакций. Энергия гиббса
- •4.5.6. Расчет величины g
- •4.5.7. Энергия гиббса и температура
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41.
- •Вопрос 42
- •Растворы электролитов
4.5.3. Расчет изменений энтропии
Энтропию веществ принято относить к стандартным условиям (T = 298,15 K и p = 101,3 кПа). Энтропию при этих условиях называют стандартной энтропией и обозначают S°(298 K). Значения стандартных энтропий для многих веществ являются справочными данными.
Принято, что энтропия идеально правильно построенных кристаллов при T = 0 К равна нулю (в такой системе полностью устраняется всякая неупорядоченность, положение частиц в узлах кристаллической решетки характеризуется идеальным порядком). Поэтому перед обозначением стандартной энтропии вещества (B) S°(298 K (B)) отсутствует знак D . Для каждого индивидуального вещества (простого или сложного) значение S(Т) > 0 при любой температуре, отличной от абсолютного нуля. С повышением температуры энтропия возрастает, так как движение частиц при этом становится более интенсивным и, следовательно, увеличивается беспорядок в системе. Энтропия возрастает при переходе вещества из кристаллического состояния в жидкое и из жидкого – в газообразное, при расширении газов, при химических взаимодействиях, приводящих к увеличению числа частиц, прежде всего, в газообразном состоянии.
Уравнение реакции позволяет судить о знаке изменения энтропии S. Например, из уравнения:
NH4NO3(т) = N2O(г) + 2H2O(г)
следует, что из 1 моль твердого NH4NO3 образуется 3 моль газообразных веществ (1 моль N2O(г) и 2 моль H2O(г)). Следовательно, S > 0.
Для расчета изменения энтропии в результате соответствующего процесса используют ее свойство функции состояния. Так, для реакции, протекающей по уравнению:
aA + bB = pP + qQ,
изменение энтропии будет равно:
S(298 К) = [pS(P) + qS(Q)] – [aS(A) + bS(B)]
|
|
Изменение энтропии в реакции образования 1 моль сложного вещества из простых веществ при стандартных условиях называется стандартной энтропией образования соединения и обозначается fS(298 K). Для реакции
A + B = AB
в стандартных условиях значения абсолютной энтропии простых веществ
fS(298 K, AB) = S(AB) – (S(A) + S(B)) |
|
4.5.4. Направление химических реакций в изолированных системах. Второй закон термодинамики
В изолированных системах, т.е. в системах, которые не обмениваются с внешней средой ни веществом, ни энергией (ни теплотой, ни работой) и имеют поэтому постоянный запас внутренней энергии (U = const, U = 0) и постоянный объем (A = p·V = 0, то V = 0) самопроизвольно идут только те процессы, которые сопровождаются ростом энтропии, S > 0. При этом процесс может идти самопроизвольно до тех пор, пока энтропия не достигнет максимального для данных условий значения и тем самым равенства S = 0. Рассмотренное положение представляет одну из формулировок второго закона термодинамики: изменение энтропии при самопроизвольном протекании химической реакции в изолированной системе всегда положительно.
Таким образом, рост энтропии является критерием термодинамической возможности самопроизвольного протекания химических реакций в изолированной системе, но изменение энтропии не является критерием направления и предела протекания реакций, при которых меняется внутренняя энергия системы, а также совершается работа против внешнего давления.