
- •Вопросы и ответы к экзамену по курсу «покс»
- •Часть 1 (зима 2009-2010 г.) билеты №№1-2
- •Часть 2 (весна 2010 г.) билеты №№27-43 (17 билетов)
- •Состояние телекоммуникаций к концу 20-го века: (к 1950 годам: 1,2,3)
- •2. Основы теории передачи данных по линиям связи. Спектральная теория и ее применение к линиям связи. Ачх.
- •Спектральный анализ сигналов на линиях связи
- •3. Характеристики линий связи. Полоса пропускания, затухание, мощность сигнала. Примеры линий связи. Помехоустойчивость, next, ber. Характеристики линий связи
- •4. Линейное кодирование. Пропускная способность линий свзяи. Связь меду полосой пропускания и пропускной способностью (теорема Шеннона, критерий Найквиста).
- •Соответствие между полосой пропускания линии связи и спектром сигнала
- •5. Методы передачи дискретных данных по линиям связи. Аналоговая модуляция, цифровое кодирование и их особенности.
- •6. Аналоговая модуляция. Модемы. Способы модуляции и их спектральные характеристики..
- •7. Цифровое кодирование. Особенности и проблемы цифрового кодирования, характеристики цифровых кодов. Основные типы кодирования и их спектральные характеристики.
- •8. Логическое кодирование. Необходимость и особенности логического кодирования. Наиболее популярные методы логического кодирования.
- •10. Кабели связи. Характеристики кабелей связи, стандарты кабельной продукции.
- •Выводы (альтернативный ответ на билет №10)
- •Дополнительные сведения (вопр. №10)
- •1. Кабели на основе неэкранированной витой пары
- •2. Кабели на основе экранированной витой пары
- •3. Коаксиальные кабели
- •4. Волоконно-оптические кабели
- •11. Структурированные кабельные сети (системы)
- •Зачем это нужно:
- •12. Проблемы совместного использования линий связи. Мультиплексирование и демультиплексирование. Tdm и цифровая телефония.
- •13. Сети с коммутацией каналов и сети с коммутацией пакетов. Основные отличия и характеристики. Применения и примеры сетей с различными способами коммутации.
- •14. Методы доступа к среде передачи и их применение в локальных сетях эвм.
- •15. Сетевые топологии физического уровня и их связь с методами доступа к среде.
- •16. Локальные и глобальные сети. Основные характеристики и отличия. Структура крупных локальных и глобальных сетей.
- •17. Локальные сети на основе технологии Ethernet. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности.
- •18. Коммутируемые сети Ethernet. Концепции коммутации и бриджинга, различные типы коммутаторов и мостов.
- •19. Технологии, специфика адаптации технологии Ethernet к сетям доступа..
- •20. Локальные сети на основе технологии fddi. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности.
- •21. Локальные сети на основе технологии Token Ring. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности..
- •22. Глобальные сети связи. Различные типы глобальных сетей, особенности и характеристики
- •23. Сети на основе Frame Relay. Особенности технологии и ее расширения. Коротко
- •24. Сети isdn. Концепция сети с интеграцией услуг. Характеристики, применение к передаче голоса и данных.
- •25. Сети X.25. Особенности и применение сетей X.25 в современном мире. Коротко
- •Вопросы
- •Часть 2 (весна 2010 г.)
- •Перед подготовкой прочитать:
- •4) It_net_05_Маршрутизация.Ppt
- •27. Сети на основе стека протоколов tcp/ip. История возникновения, структура стека протоколов и назначение различных элементов стека. Протоколы, порты, сокеты.
- •28. Структура адресного пространства в сетях tcp/ip для iPv4. Деление сетей на подсети. Cidr, vlsm.
- •28 Из Семёнова [4]
- •Дерево протоколов стека tcp/ip
- •20. Проблема и общие алгоритмы маршрутизации.
- •21. Маршрутизаторы. Типовые характеристики современных маршрутизаторов.
- •30. Особенности и отличия iPv6, обеспечение обратной совместимости с iPv4, новая функциональность и проблемы внедрения.
- •30 Из Семёнова [4]
- •30 Продолжение
- •30 Продолжение
- •31. Доменная система имен.
- •Internet подразделяют
- •32. Из презентации
- •33. Протокол rip. Особенности и проблемы, способы их решения. Ограничения применения и их анализ.
- •34. Протокол ospf в сетях сложной структуры. Концепция областей и обмена маршрутами. Агрегирование.
- •35. Маршрутизация в рамках egp. Протоколы bgp-3 и bgp-4. Атрибуты и их характеристики. Особенности и проблемы, присущие протоколам глобальной маршрутизации. Агрегирование, cidr, vlsm.
- •35 Из Семёнова [4]
- •36. Технологии mpls/ip и EoMpls, концепция Label Switching, применение mpls для построения виртуальных частных сетей (mpls/vpn), пересекающиеся адресные пространства.
- •37. Механизмы обеспечения качества обслуживания (QoS) в iPv4, различные подходы к обеспечению QoS в зависимости от задачи, алгоритмы обслуживания и предотвращения перегрузки сети.
- •38. Виртуальные частные сети как механизм туннелирования траффика, технологии pptp и l2tp, особенности применения и отличительные особенности.
- •38. Продолжение - Виртуальные частные сети vpn
- •Классификация vpn
- •39. Построение защищенных каналов связи поверх ip с использованием технологии ipsec, интеграция ipsec в iPv6, использование ipsec в iPv4. Протоколы ike, isakmp, ah, esp.
- •40. Передача голосового трафика поверх ip, протоколы sip, rtp. Особенности алгоритмов компрессии голоса и проблемы транспортной инфраструктуры.
- •41. Технологии ip multicast для iPv4: взаимодействие с unicast-маршрутизацией, igmp, pim, rp.
- •42. Функционирование почтовой системы на основе smtp/esmtp, envelope и header адреса, различные технологии защиты от спама.
- •43. Обеспечение безопасности в сетях на основе iPv4 и iPv6. Проблемы и способы их решения.
- •Дополнительный материал к части 2 Введение. Основные фундаментальные понятия и определения из [6]
- •Дополнительный материал к части 2 (Олифер –глава 5 – тема - Маршрутизация)
- •21. Маршрутизаторы. Типовые характеристики современных маршрутизаторов.
- •Дополнительный материал к части 2 (Олифер –глава 5 тема - Протокол ip)
- •5.3. Протокол ip.
- •5.3.3. Таблицы маршрутизации в ip-сетях
- •5.3.6. Фрагментация ip-пакетов
- •5.3.7. Протокол надежной доставки tcp-сообщений
- •5.4.3. Протокол «состояния связей» ospf
- •Вопросы 5 курса
41. Технологии ip multicast для iPv4: взаимодействие с unicast-маршрутизацией, igmp, pim, rp.
Из шпоргалки [2] п. 40 (см. ссылку - реальное голосовое общение)
См.также из Семёнова [4] – 4.4.9.0 Протокол IGMP и передача мультимедиа по Интернет.doc 4.4.9.5 Протокол PIM.doc, 4.4.9.2 Протокол реального времени RTP.doc
IGMP
Передача мультимедийных данных по сетям Интернет является одним из наиболее важных направлений. Этот вид информации передается обычно в режиме без установления соединения (протокол UDP-RTP). Наиболее типичной схемой в этом случае является наличие одного передатчика и большого числа приемников. Эта схема реализуется с использованием мультикастинг-адресации. Мультикастинг-адресация может осуществляться на IP- и MAC-уровнях. В Ethernet для этих целей зарезервирован блок адресов в диапазоне от 01:00:5E:00:00:00 до 01:00:5E:7F:FF:FF. Первый байт адреса, равный 01, указывает на то, что адрес является мультикастным. Данная схема резервирования адресного пространства позволяет использовать 23 бита Ethernet-адреса для идентификации группы рассылки при IP-мультикастинге (см. рис. 4.4.9.1.).
Рис. 4.4.9.1. Соотношение мультикастинговых MAC- и IP-адресов
Область из 5 бит в IP-адресе, отмеченная *****, не используется при формировании Ethernet-адреса. Так как соотношение IP и MAC-адресов не является однозначным, драйверы должны обеспечивать обработку адресов с тем, чтобы интерфейсы получали только те кадры, которые действительно им предназначены. Для того чтобы информировать маршрутизатор о наличии участников мультикастинг-обмена в субсети, связанной с тем или иным интерфейсом, используется протокол IGMP.
Протокол IGMP (internet group management protocol, RFC-1112) используется для видеоконференций, передачи звуковых сообщений, а также группового исполнения команд различными ЭВМ. Этот протокол использует групповую адресацию (мультикастинг).
Групповая форма адресации нужна тогда, когда какое-то сообщение или последовательность сообщений необходимо послать нескольким (но не всем) адресатам одновременно. При этой форме адресации ЭВМ имеет возможность выбрать, хочет ли она участвовать в этой процедуре. Когда группа ЭВМ хочет взаимодействовать друг с другом, используется один групповой (мультикастинг) адрес. Групповая адресация может рассматриваться как обобщение обычной системы адресов, а традиционный IP-адрес - частный случай группового обращения при числе ЭВМ, равном 1.
При групповой адресации один и тот же пакет может быть доставлен заданной группе ЭВМ. Членство в этой группе может динамично меняться со временем. Любая ЭВМ может войти в группу и выйти из группы в любое время по своей инициативе. В то же время ЭВМ может быть членом большого числа таких групп. ЭВМ может посылать пакеты членам группы, не являясь им сама. Каждая группа имеет свой адрес класса D (рис. 4.4.9.2, см. также рис. 4.4.9.1).
Рис. 4.4.9.2. Формат группового адреса
Для того чтобы участвовать в коллективных обменах в локальной сети ЭВМ должна быть снабжена программой, которая поддерживает этот режим. При этом сервер локальной сети (gateway) информируется о намерении использовать мультикастинг. Сервер передает эту информацию другим внешним серверам IP-сети. Следует иметь в виду, что мультикастинг также как и широковещательный режим, заметно загружает сеть. IGMP для передачи своих сообщений использует IP-дейтограммы (IGMP-пакеты инкапсулируются в них). Для подключения к группе сначала посылается IGMP-сообщение "всем ЭВМ" о включении в группу, при этом локальный мультикаст-сервер подготавливает маршрут. Локальный мультикаст-сервер время от времени проверяет ЭВМ и определяет, не покинули ли они группу (ЭВМ не подтверждает свое членство в группе). Все обмены между ЭВМ и мультикаст-сервером производятся в режиме ip-мультикастинга, те есть, любое сообщение адресуется всем ЭВМ группы. ЭВМ, не принадлежащая группе, IGMP-сообщений не получает, что сокращает загрузку сети.
4.4.9.1 Мультикастинг и MBONE.doc
MBONE - это виртуальная сеть, базирующаяся на мультикастинг-протоколах. Данный режим работы поддерживается не всеми маршрутизаторами. Сеть представляет собой систему Ethernet-сетей, объединенных друг с другом соединениями точка-точка, которые называются "туннелями". Конечными точками таких туннелей обычно являются машины класса рабочих станций, снабженные соответствующим программным обеспечением.
IP-мультикастинг-пакеты инкапсулируются при передаче через туннели так, что они выглядят как обычные IP-уникаст-пакеты.
Мультикастинг-маршрутизатор при посылке пакета через туннель подготавливает IP-пакет с заголовком, который содержит адрес маршрутизатора-партнера на другом конце туннеля, при этом поле IP-протокола содержит код 4 (IP). Маршрутизатор-приемник извлекает вложенный мультикастинг-пакет и направляет далее, если это требуется.
Протокол PIM и узел RP 4.4.9.5 Протокол PIM.doc
Протокол PIM (Protocol Independent Multicast) призван решить проблемы маршрутизации для произвольного числа и расположения членов группы и для произвольного числа отправителей информации.
Главным преимуществом данного протокола является эффективная поддержка работы "рассеянных" мультикастинг-групп.
PIM базируется на традиционных маршрутных протоколах, конкретно не связан ни с каким из них, им используются сформированные этими протоколами маршрутные таблицы. Существует два режима работы протокола –
DM (для компактных групп)
и SM (Protocol Independent Multicast-Sparse Mode (PIM-SM)).
В режиме SM маршрутизаторы, имеющие членов мультикастинг-группы, посылают сообщения о присоединении к дереву рассылки в узлы, которые называются точками встречи (RP). Отправители используют RP для объявления о своем существовании, а получатели, чтобы узнать о новых отправителях. В качестве RP может использоваться любой маршрутизатор, поддерживающий протокол PIM.
Когда
какой-то клиент хочет подключиться к
некоторой группе, ближайший к нему
маршрутизатор посылает специальное
сообщение о включении в группу (PIM-joint)
узлу, объявленному для данной группы
точкой встречи (RP). Число RP в сети
может быть произвольным. Узел RP
пересылает сообщение о включении
узлу-отправителю (или отправителям).
Если маршрутизатор не имеет информации
о RP, включается схема, работающая
для компактных групп. При обработке
сообщения о включении в группу
промежуточные маршрутизаторы формируют
часть дерева мультикастинг-маршрутов
между RP и получателем. При отправке
мультикастинг-пакета соответствующий
маршрутизатор посылает узлу RP
регистрационное сообщение (PIM-register),
куда вкладывается информационный пакет.
Если используется несколько RP, отправитель
должен посылать пакеты всем RP. Получатель
же должен быть подключен лишь к одному
из RP. В случае, когда сообщение о включении
достигнет отправителя раньше, чем RP,
подключение осуществляется, минуя RP.
Если необходимо оптимизировать дерево
доставки пакетов, маршрутизаторы-получатели
должны послать сообщение о включении
самому отправителю. После этого дерево
соединений видоизменяется, некоторыми
узлами, если требуется, посылается
сообщение об отключении.
Рис. 4.4.9.5.1. Иллюстрация реализации протокола мультикастинг маршрутизации PIM
Получатель посылает PIM-joint пакет в RP, устанавливая канал от RP до получателя. Из рисунка видно, что исходный маршрут d-c-b-a длиннее оптимального d-b-a. Последний может быть реализован после посылки PIM-joint команды от a к d.
Следует
заметить, что большинство протоколов
для маршрутизации мультимедийной
информации формируют маршрут не от
отправителя к получателю, а в обратном
направлении. Это имеет под собой веские
причины. Дерево рассылки должно быть
построено так, чтобы поток отправителя
как можно дольше и меньше разветвлялся.
Желательно, чтобы разветвления происходили
как можно ближе к получателю. Это
соображение проиллюстрировано на рис.
4.4.9.5.2. На рисунке условно, в виде сетки
маршрутизаторов (желтые кружочки)
показан фрагмент сети Интернет. Зеленым
прямоугольником отмечен передатчик, а
голубыми кружочками приемники - члены
группы. Маршруты от передатчика к
приемникам можно проложить индивидуально
(выделены зеленым цветом), а можно и
"коллективно" (синий цвет). От
передатчика до маршрутизатора отмеченного
красным цветом следует один поток для
всех приемников. Такое решение приводит
к минимизации сетевой загрузки, ведь
всем приемникам посылаются одни и те
же пакеты. Чем позже их пути разойдутся,
тем лучше. Именно этот алгоритм и
реализует протокол PIM. Точки разветвления
потоков на рис. 4.4.9.5.2 отмечены крестами
(RP).
Рис. 4.4.9.5.2.