
- •Вопросы и ответы к экзамену по курсу «покс»
- •Часть 1 (зима 2009-2010 г.) билеты №№1-2
- •Часть 2 (весна 2010 г.) билеты №№27-43 (17 билетов)
- •Состояние телекоммуникаций к концу 20-го века: (к 1950 годам: 1,2,3)
- •2. Основы теории передачи данных по линиям связи. Спектральная теория и ее применение к линиям связи. Ачх.
- •Спектральный анализ сигналов на линиях связи
- •3. Характеристики линий связи. Полоса пропускания, затухание, мощность сигнала. Примеры линий связи. Помехоустойчивость, next, ber. Характеристики линий связи
- •4. Линейное кодирование. Пропускная способность линий свзяи. Связь меду полосой пропускания и пропускной способностью (теорема Шеннона, критерий Найквиста).
- •Соответствие между полосой пропускания линии связи и спектром сигнала
- •5. Методы передачи дискретных данных по линиям связи. Аналоговая модуляция, цифровое кодирование и их особенности.
- •6. Аналоговая модуляция. Модемы. Способы модуляции и их спектральные характеристики..
- •7. Цифровое кодирование. Особенности и проблемы цифрового кодирования, характеристики цифровых кодов. Основные типы кодирования и их спектральные характеристики.
- •8. Логическое кодирование. Необходимость и особенности логического кодирования. Наиболее популярные методы логического кодирования.
- •10. Кабели связи. Характеристики кабелей связи, стандарты кабельной продукции.
- •Выводы (альтернативный ответ на билет №10)
- •Дополнительные сведения (вопр. №10)
- •1. Кабели на основе неэкранированной витой пары
- •2. Кабели на основе экранированной витой пары
- •3. Коаксиальные кабели
- •4. Волоконно-оптические кабели
- •11. Структурированные кабельные сети (системы)
- •Зачем это нужно:
- •12. Проблемы совместного использования линий связи. Мультиплексирование и демультиплексирование. Tdm и цифровая телефония.
- •13. Сети с коммутацией каналов и сети с коммутацией пакетов. Основные отличия и характеристики. Применения и примеры сетей с различными способами коммутации.
- •14. Методы доступа к среде передачи и их применение в локальных сетях эвм.
- •15. Сетевые топологии физического уровня и их связь с методами доступа к среде.
- •16. Локальные и глобальные сети. Основные характеристики и отличия. Структура крупных локальных и глобальных сетей.
- •17. Локальные сети на основе технологии Ethernet. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности.
- •18. Коммутируемые сети Ethernet. Концепции коммутации и бриджинга, различные типы коммутаторов и мостов.
- •19. Технологии, специфика адаптации технологии Ethernet к сетям доступа..
- •20. Локальные сети на основе технологии fddi. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности.
- •21. Локальные сети на основе технологии Token Ring. Физический и канальный уровни. Основные характеристики и отличия. Различные реализации и их особенности..
- •22. Глобальные сети связи. Различные типы глобальных сетей, особенности и характеристики
- •23. Сети на основе Frame Relay. Особенности технологии и ее расширения. Коротко
- •24. Сети isdn. Концепция сети с интеграцией услуг. Характеристики, применение к передаче голоса и данных.
- •25. Сети X.25. Особенности и применение сетей X.25 в современном мире. Коротко
- •Вопросы
- •Часть 2 (весна 2010 г.)
- •Перед подготовкой прочитать:
- •4) It_net_05_Маршрутизация.Ppt
- •27. Сети на основе стека протоколов tcp/ip. История возникновения, структура стека протоколов и назначение различных элементов стека. Протоколы, порты, сокеты.
- •28. Структура адресного пространства в сетях tcp/ip для iPv4. Деление сетей на подсети. Cidr, vlsm.
- •28 Из Семёнова [4]
- •Дерево протоколов стека tcp/ip
- •20. Проблема и общие алгоритмы маршрутизации.
- •21. Маршрутизаторы. Типовые характеристики современных маршрутизаторов.
- •30. Особенности и отличия iPv6, обеспечение обратной совместимости с iPv4, новая функциональность и проблемы внедрения.
- •30 Из Семёнова [4]
- •30 Продолжение
- •30 Продолжение
- •31. Доменная система имен.
- •Internet подразделяют
- •32. Из презентации
- •33. Протокол rip. Особенности и проблемы, способы их решения. Ограничения применения и их анализ.
- •34. Протокол ospf в сетях сложной структуры. Концепция областей и обмена маршрутами. Агрегирование.
- •35. Маршрутизация в рамках egp. Протоколы bgp-3 и bgp-4. Атрибуты и их характеристики. Особенности и проблемы, присущие протоколам глобальной маршрутизации. Агрегирование, cidr, vlsm.
- •35 Из Семёнова [4]
- •36. Технологии mpls/ip и EoMpls, концепция Label Switching, применение mpls для построения виртуальных частных сетей (mpls/vpn), пересекающиеся адресные пространства.
- •37. Механизмы обеспечения качества обслуживания (QoS) в iPv4, различные подходы к обеспечению QoS в зависимости от задачи, алгоритмы обслуживания и предотвращения перегрузки сети.
- •38. Виртуальные частные сети как механизм туннелирования траффика, технологии pptp и l2tp, особенности применения и отличительные особенности.
- •38. Продолжение - Виртуальные частные сети vpn
- •Классификация vpn
- •39. Построение защищенных каналов связи поверх ip с использованием технологии ipsec, интеграция ipsec в iPv6, использование ipsec в iPv4. Протоколы ike, isakmp, ah, esp.
- •40. Передача голосового трафика поверх ip, протоколы sip, rtp. Особенности алгоритмов компрессии голоса и проблемы транспортной инфраструктуры.
- •41. Технологии ip multicast для iPv4: взаимодействие с unicast-маршрутизацией, igmp, pim, rp.
- •42. Функционирование почтовой системы на основе smtp/esmtp, envelope и header адреса, различные технологии защиты от спама.
- •43. Обеспечение безопасности в сетях на основе iPv4 и iPv6. Проблемы и способы их решения.
- •Дополнительный материал к части 2 Введение. Основные фундаментальные понятия и определения из [6]
- •Дополнительный материал к части 2 (Олифер –глава 5 – тема - Маршрутизация)
- •21. Маршрутизаторы. Типовые характеристики современных маршрутизаторов.
- •Дополнительный материал к части 2 (Олифер –глава 5 тема - Протокол ip)
- •5.3. Протокол ip.
- •5.3.3. Таблицы маршрутизации в ip-сетях
- •5.3.6. Фрагментация ip-пакетов
- •5.3.7. Протокол надежной доставки tcp-сообщений
- •5.4.3. Протокол «состояния связей» ospf
- •Вопросы 5 курса
38. Продолжение - Виртуальные частные сети vpn
Совокупность защищённых каналов, созданных предприятиемв публичной сети для объединения своих филиалов, часто называют виртуальной частной сетью (Virtual Private Network, VPN) [6] гл.12 стр.617
Материал из Википедии [3] VPN-wiki.doc
VPN (англ. Virtual Private Network — виртуальная частная сеть) — обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрованию, аутентификация, инфраструктуры публичных ключей, средствам для защиты от повторов и изменения передаваемых по логической сети сообщений).
Traditional Virtual Private Network
В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел, узел-сеть и сеть-сеть.
Уровни реализации
Обычно VPN развёртывают на уровнях не выше сетевого, так как применение криптографии на этих уровнях позволяет использовать в неизменном виде транспортные протоколы (такие как TCP, UDP).
Пользователи Microsoft Windows обозначают термином VPN одну из реализаций виртуальной сети — PPTP, причём используемую зачастую не для создания частных сетей.
Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол — IP (такой способ использует реализация PPTP — Point-to-Point Tunneling Protocol). Технология VPN в последнее время используется не только для создания собственно частных сетей, но и некоторыми провайдерами «последней мили» для предоставления выхода в Интернет.
При должном уровне реализации и использовании специального программного обеспечения сеть VPN может обеспечить высокий уровень шифрования передаваемой информации. При правильной настройке всех компонентов технология VPN обеспечивает анонимность в Сети.
Структура VPN
VPN состоит из двух частей:
• «внутренняя» (подконтрольная) сеть, которых может быть несколько,
• и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет).
Возможно также подключение к виртуальной сети отдельного компьютера. Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации, а затем процесса аутентификации. После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации.
Классификация VPN
Классификация vpn
Классифицировать VPN решения можно по нескольким основным параметрам:
По степени защищенности используемой среды
Защищённые
Наиболее распространённый вариант виртуальных частных сетей. С его помощью возможно создать надежную и защищенную подсеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.
Доверительные
Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Вопросы обеспечения безопасности становятся неактуальными. Примерами подобных VPN решений являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol). (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).
По способу реализации
• В виде специального программно-аппаратного обеспечения
Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.
• В виде программного решения
Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.
• Интегрированное решение
Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.
По назначению
• Intranet VPN
Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.
• Remote Access VPN
Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративного ноутбука, смартфона или интернет-киоскa.
• Extranet VPN
Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.
• Internet VPN
Используется для предоставления доступа к интернету провайдерами, обычно в случае если по одному физическому каналу подключаются несколько пользователей.
• Client/Server VPN
Он обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте. Этот вариант похож на технологию VLAN, но вместо разделения трафика, используется его шифрование.
По типу протокола
Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его. Адресация в нём чаще всего выбирается в соответствии со стандартом RFC5735, из диапазона Приватных сетей TCP/IP
По уровню сетевого протокола
По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.
Примеры VPN
• IPSec (IP security) — часто используется поверх IPv4.
• PPTP (point-to-point tunneling protocol) — разрабатывался совместными усилиями нескольких компаний, включая Microsoft.
• PPPoE (PPP (Point-to-Point Protocol) over Ethernet
• L2TP (Layer 2 Tunnelling Protocol) — используется в продуктах компаний Microsoft и Cisco.
• L2TPv3 (Layer 2 Tunnelling Protocol version 3).
• OpenVPN SSL VPN с открытым исходным кодом, поддерживает режимы PPP, bridge, point-to-point, multi-client server