Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тр-р.doc
Скачиваний:
55
Добавлен:
07.12.2018
Размер:
1.15 Mб
Скачать

Упрощенная схема замещения трансформатора

Ток холостого хода в силовых трансформаторах большой и средней мощности составляют 0,5…3% от номинального, т.е.мал, поэтому при расчетах используют упрощенную схему замещения без намагничивающего контура.

В этой схеме активное сопротивление R1 и соединяют последовательно, и они образуют результирующее активное сопротивление Rk = R1 + . Аналогично с индуктивным сопротивлением хk = х1 + .. Погрешность в определении I1 составляет 0,1%, что допустимо.

Для упрощенной схемы замещения строим векторную диаграмму.

В этой диаграмме - результирующее активное падение напряжения в приведенном трансформаторе, - результирующее реактивное падение напряжения в приведенном трансформаторе, - результирующее полное падение напряжения в приведенном трансформаторе: .

Векторная диаграмма позволяет определить изменение напряжения трансформатора в зависимости от нагрузки. Его рассчитывают при номинальном напряжении и номинальной частоте.

Если известны Uк.а, Uк.р., и Uк, то полное падение напряжения в трансформаторе и его активные и реактивные составляющие :

где β - коэффициент нагрузки,

Вторичное напряжение U2 при нагрузке в общем случае отличается от вторичной U20 при ХХ. Изменения вторичного напряжения при переходе от х.х к нагрузке при U1H= const принято выражать в процентах от номинального напряжения.

называется процентным изменением напряжения трансформатора. Из диаграммы видно, что из-за малости угла (φ1- φ2) за модуль вектора можно принять его проекцию на напряжение - , т.е. отрезок ОА. Тогда . Спроектировав аналогично и, получим , т.о. относительное изменение напряжения.

При номинальной нагрузке:

или

изменение напряжения трансформатора пропорционально току нагрузки и зависит от угла φ2 (т.е. характеристика нагрузки) поэтому используя понятие коэффициент нагрузки β

Но формула часто дает достаточно точный результат.

Для силовых трансформаторов эта формула имеет вид:

Внешние характеристики трансформатора.

Энергетическая диаграмма.

По данным опыта х.х. определяем Ктранс., магнитные потери и параметры ветви намагничивания Zm , rm, xm, Магнитные потери.

Внешние характеристики – это зависимости

График зависимости

выглядит так: от величины нагрузки

график зависимости ∆U от коэффициента мощности, т.е.

Наибольшее значение ∆U=Uк при равенстве углов сдвига фаз φ2 = φк, т.е. Cos(φ2 - φ2) = 1

Чем меньше Cos φ2, тем ниже проходит внешняя характеристика и значительнее изменяется . При активно-индуктивной нагрузке всегда <U1; при активно-емкостной и некоторым φ2 оно может стать больше U1 (т.к. при φ2>0 некоторые члены содержащие Sin φ2 становятся отрицательными). Характер изменения вторичного напряжения в трансформаторах средней и большой мощности (при xk>Rk) при различных значениях угла φ2 различен.

Энергетическая диаграмма

КПД. При передаче энергии из первичной обмотки во вторичную возникают электрические потери мощности в активном сопротивлении первичной и вторичной обмоток ∆PЭЛ1 и ∆PЭЛ2, а также магнитные потери в стали магнитопровода ∆РМ (от вихревых токов и гистерезиса).

Процесс передачи энергии в трансформаторе характеризует энергетическая диаграмма.

В соответствии с диаграммой мощность, отдаваемая трансформатором нагрузке

∆P21 - ∆PЭЛ1 - ∆PЭЛ2 - ∆PМ, где

Р1 – мощность, поступающие из сети в первичной обмотку.

Мощность PЭМ1 - ∆PЭЛ1 - ∆PМ , поступающую во вторичную обмотку называют внутренней электромагнитной мощностью трансформатора. Она определяет габаритные размеры и массу трансформатора.

Коэффициент полезного действия трансформатора называют отношение отдаваемой мощности Р2 к мощности Р1

или

, где

∆Р - суммарные потери в трансформаторе.

С учетом энергетической диаграммы.

Согласно ГОСТа потери мощности в трансформаторе определяют по данным опытов х.х. и к.з., т.к. в этих опытах трансформатор не отдает мощность нагрузке, следовательно, вся мощность поступающая в первичную обмотку, расходуется на компенсацию имеющихся в нем потерь.

При опыте холостого хода ток I0 невелик и электрическими потерями мощности в первичной обмотке можно пренебречь. А магнитный поток практически равен потоку при нагрузке, т.к. его значение определяется приложенным к трансформатору напряжением. Магнитные потери в стали пропорционально квадрату значения магнитного потока следовательно магнитные потери в стали магнитопровода равны мощности, потребляемой трансформатором при ХХ и номинальное первичное напряжения, т.е. ∆РМ≈Р0

КПД трансформатора зависит от величины нагрузки (β) и от характера нагрузки (Cosφ2)

Максимальное значение КПД соответствует нагрузке, при которой магнитные потери равны электрическим: Отсюда значение коэффициента нагрузки, соответствует ηmax

Обычно КПД трансформатора имеет max значение при β=0.45÷0.65

Кроме КПД по мощности пользуются значением КПД по энергии, которая представляет собой отношения количества энергии отданной трансформатором потребителю W2 (кВт ч) в течение года, к энергии, полученной им от питающей электросети W1 за это же время

КПД трансформатора по энергии характеризует эффективность эксплуатации трансформации.