Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

курсовая работа / KURSOVAY_TAU / Нелинейная_часть

.doc
Скачиваний:
71
Добавлен:
22.02.2014
Размер:
494.08 Кб
Скачать

2. Нелинейная часть.

Структурная схема с нелинейным элементом имеет вид:

Здесь,

Нелинейный элемент имеет статическую характеристику вида:

С точки зрения энергетических затрат, использование нелинейных элементов нецелесообразно. Проанализируем статическую характеристику данного нелинейного элемента на трех ее участках.

- передаточная функция звена.

Тогда на первом и третьем участках , то есть на них система не работоспособна.

Работает система только на втором участке, где или по-другому можно записать:

Таким образом, нелинейный элемент в данной схеме целесообразней заменить линейным элементом с передаточной функцией W15=K, где К=2 – коэффициент усиления.

Эквивалентная линеаризованная структурная схема примет вид:

  1. Определим передаточную функцию системы.

Определим устойчивость системы с помощью критерия Гурвица. Характеристическое уравнение найденной передаточной функции имеет вид:

0.00029p3+4080.1029p2+3p=0

Используя данное уравнение составим главный определитель Гурвица.

Из главного определителя выделим диагональные миноры:

То есть, система опять находится на границе устойчивости, так как главный определитель Гурвица равен нулю.

Проверим устойчивость системы по критерию Ляпунова. Для этого найдем корни характеристического полинома полученной передаточной функции.

Так как в результате получили два отрицательных корня и один нулевой, то, согласно критерию Ляпунова, можно сделать вывод, что система находится на границе устойчивости.

Передаточную функцию можно записать следующим образом:

или

Если сравнить передаточную функцию, полученную в линейной части курсовой работы с передаточной функцией линеаризованной системы , то можно сделать вывод, что их отличие мало. Следовательно, все характеристики также должны совпадать.

  1. Построим переходный процесс линеаризованной системы.

- передаточная функция замкнутой системы.

График переходного процесса аналогичен переходному процессу линейной части.

По графику переходного процесса определим прямые оценки качества системы:

  1. время переходного процесса tп =940 c

  2. время первого согласования t1=925 c

  3. установившееся значение hуст =1

  4. максимальное значение hмах =1

  5. перерегулирование %

        1. Построим АЧХ и ФЧХ линеаризованной системы.

Заменим , получим:

Найдем ФЧХ системы по формуле:

или

  1. Построим ЛАЧХ и ЛФЧХ линеаризованной системы.

Определим собственные частоты каждого звена линеаризованной передаточной функции:

тогда

Построим график ЛФЧХ по функции:

или

Таким образом, можно сделать вывод, что звено W15=K существенно не повлияло на систему в целом.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке KURSOVAY_TAU