Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теплообменники(витые,погружные, тарельчатые).doc
Скачиваний:
10
Добавлен:
06.12.2018
Размер:
613.89 Кб
Скачать

1.6 Оросительные теплообменники

Оросительные теплообменники представляют собой ряд расположенных одна над другой прямых труб, орошаемых снаружи водой (рисунок 8). Трубы соединяют сваркой или на фланцах при помощи "калачей".

Рисунок 8 - Оросительный теплообменник.

Оросительные теплообменники применяют главным образом в качестве холодильников для жидкостей и газов или как конденсаторы. Орошающая вода равномерно подается сверху через желоб с зубчатыми краями. Вода, орошающая трубы, частично испаряется, вследствие чего расход ее в оросительных теплообменниках несколько ниже, чем в холодильниках других типов. Оросительные теплообменники– довольно громоздки аппараты, они характеризуются низкой интенсивностью теплообмена, но просты в изготовлении и эксплуатации. Их применяют, когда требуется небольшая производительность, а также при охлаждении химически агрессивных сред или необходимости применения поверхности нагрева из специальных мате риалов (например, для охлаждения кислот применяют аппараты из кислотоупорного ферросилида, который плохо обрабатывается).

1.7 Ребристые теплообменники

Ребристые теплообменники применяют для увеличения теплообменной поверхности оребрение с той стороны, которая характеризуется набольшими термическими сопротивлениями. Ребристые теплообменники (калориферы) используют, например, при нагревании паром воздуха или газов. Важным условием эффективного использования ребер является их плотное соприкосновение с основной трубой (отсутствие воздушной прослойки), а также рациональное размещение ребер.

Ребристые теплообменники широко применяют в сушильных установках, отопительных системах и как экономайзеры.

1 - коллектор для входа пара; 2 - оребренная труба; 3- коллектор для приема конденсата.

Рисунок 9 - Пластинчатый калорифер.

Рисунок 10 - Схема устройства пластинчато-ребристого теплообменника.

Помимо трубчатых теплообменников с трубами, имеющими поперечные ребра прямоугольного или трапециевидного сечения, разработаны конструкции с продольными, плавниковыми, проволочными, игольчатыми непрерывными спиральными ребрами и др.

Трубы с поперечными ребрами различной формы широко используются, в частности, в аппаратах для нагрева воздуха –калориферах (рисунок 117), а также в аппаратах воздушного охлаждения. При нагреве воздуха обычно применяют насыщенный водяной пар, поступающий в коллектор 1 и далее в пучок оребренных труб 2. Конденсат отводится из коллектора 3. Иногда используются продольные ребра, которые для турбулизации пограничного слоя (что особенно важно при ламинарном течении теплоносителя) на определенном расстоянии надрезаются.

Конструкции оребренных теплообменников разнообразны. Схема устройства современного пластинчато–ребристого теплообменника, работающего по принципу противотока, приведена на рисунке 118. Теплообменники такого типа используются, например, в низкотемпературных установках для разделения воздуха.

1.8 Спиральные теплообменники

В спиральном теплообменнике (рисунок 11) поверхность теплообмена образуется двумя 1 металлическими листами 1 и 2, свернутыми по спирали. Внутренние концы листов приварены к глухой перегородке З, а их наружные концы сварены друг с другом. С торцов спирали закрыты установленными на прокладках плоскими крышками 4 и 5. Таким образом внутри аппарата образуются два изолированных один от другого спиральных канала (шириной 2–8 мм), по которым, обычно противотоком, движутся теплоносители. Как показано на рисунок 12, теплоноситель 1 поступает через нижний штуцер и удаляется через боковой штуцер в правой крышке теплообменника, а теплоноситель 2 входит в верхний штуцер и удаляется через боковой штуцер в левой крышке.

1, 2 - листы, свернутые в спирали; 3 - перегородка; 4, 5 - крышки.

Рисунок 11 - Спиральный теплообменник.

Имеются также конструкции спиральных теплообменников перекрестного тока, применяемые главным образом для нагрева и охлаждения газов и конденсации паров.

Спиральные теплообменники весьма компактны, работают при высоких скоростях теплоносителей (для жидкостей 1–2 м/с) и обладают при равных скоростях сред меньшим гидравлическим сопротивлением, чем трубчатые теплообменники различных типов. Вместе с тем эти аппараты сложны в изготовлении и работают при ограниченных избыточных давлениях, не превышающих 10х105 н/м2 (10 ат), так как намотка спиралей затрудняется с увеличением толщины листов; кроме того, возникают трудности при создании плотного соединения между спиралями и крышками.