Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Expl_nig_skv_11.doc
Скачиваний:
3
Добавлен:
06.12.2018
Размер:
441.34 Кб
Скачать

11.6. Определение глубины подвески пцэн c помощью кривых распределения давления

Глубина подвески насоса и условия работы ЭЦЭН как на приеме, так и на его выкиде довольно просто определяется с помощью кривых распределения давления вдоль ствола скважины и НКТ. Предполагается, что методы построения кривых распределения давления P(х) уже известны из общей теории движения газожидкостных смесей в НКТ.

Если дебит задан, то из формулы (11.2) (или по индикаторной линии) определяется забойное давление Pс, соответствующее этому дебиту. От точки Р = Рс строится график распределения давления (по шагам) Р(х) по схеме «снизу вверх». Кривая Р(х) строится для заданного дебита Q, газового фактора Г0 и прочих данных, таких как плотность жидкости, газа, растворимость газа, температура, вязкость жидкости и др., учитывая при этом, что от забоя газожидкостная смесь движется по всему сечению обсадной колонны.

На рис.11.10 показана линия распределения давления P(х) (линия 7), построенная снизу вверх от точки с координатами Рс, H.

В процессе вычисления по шагам значений Р и х в качестве промежуточной величины для каждого шага получаются значения расходной газонасыщенности β. По этим данным, начиная с забоя, можно построить новую кривую β(x) (рис.11.10, кривая 2). При забойном давлении, превышающем давление насыщения Pс > Pнас, линия β(х) будет иметь своим началом точку, лежащую на оси ординат выше забоя, т.е. на той глубине, где давление в стволе скважины будет равно или меньше Pнас.

При Рс < Рнас свободный газ будет присутствовать на забое и поэтому функция β(x) при х = Н уже будет иметь некоторое положительное значение. Абсцисса точки А будет соответствовать начальной газонасыщенности β на забое (х = Н).

Рис.11.10. Определение глубины подвески ПЦЭН и условий его работы с помощью построения кривых распределения давления:

1 - Р(х) - построенная от точки Рс; 2 - β(х) - кривая распределения газосодержания; 3 - Р(х), построенная от точки Ру; ΔР - перепад давлений, развиваемый ПЦЭН

При уменьшении х β будет возрастать в результате уменьшения давления.

Построение кривой P(х) должно быть продолжено до пересечения этой линии 1 с осью ординат (точка б).

Выполнив описанные построения, т.е. построив линии 1 и 2 от забоя скважины, приступают к построению кривой распределения давления P(х) в НКТ от устья скважины, начиная от точки х = 0 P = Pу, по схеме «сверху вниз» по шагам по любой методике и в частности по методике, описанной в общей теории движения газожидкостных смесей в трубах (глава 7). Вычисление производится для заданного дебита Q, того же газового фактора Г0 и других данных, необходимых для расчета.

Однако в этом случае кривая P(х) рассчитывается для движения ГЖС по НКТ, а не по обсадной колонне, как в предыдущем случае.

На рис.11.10 функция P(х) для НКТ, построенная сверху вниз, показана линией 3. Линия 3 должна быть продолжена вниз либо до забоя, либо до таких значений х, при которых газонасыщенность β становится достаточно малой (4-5%) или даже равной нулю.

Поле, лежащее между линиями 1 и 3 и ограниченное горизонтальными линиями I - I и II - II, определяет область возможных условий работы ПЦЭН и глубины его подвески. Расстояние по горизонтали между линиями 1 и 3 в определенном масштабе определяет перепад давлений ΔP, который должен сообщить потоку насос, чтобы скважина работала с заданным дебитом Q, забойным давлением Pc и устьевым давлением Pу.

Кривые на рис.11.10 могут быть дополнены кривыми распределения температур t(х) от забоя до глубины подвески насоса и от устья также до насоса с учетом скачка температуры (расстояние в - е) на глубине подвески ПЦЭН, происходящего от тепловой энергии, выделяемой двигателем и насосом. Этот температурный скачок можно определить, приравнивая потери механической энергии в насосе и электродвигателе к приращению тепловой энергии потока. Полагая, что переход механической энергии в тепловую совершается без потерь в окружающую среду, можно определить приращение температуры жидкости в насосном агрегате.

(11.11)

Здесь с - удельная массовая теплоемкость жидкости, Дж/кг°С; ηн и ηд - к.п.д. насоса и двигателя соответственно.

Тогда температура жидкости, покидающей насос, будет равна

,

где tпр - температура жидкости на приеме насоса.

При отклонении режима работы ПЦЭН от оптимального к.п.д. будет уменьшаться и нагрев жидкости будет увеличиваться.

Для того чтобы выбрать типоразмер ПЦЭН, необходимо знать дебит и напор.

При построении кривых Р(х) (см. рис.11.10) дебит должен быть задан. Перепад давлений на выкиде и приеме насоса при любой глубине его спуска определяется как расстояние по горизонтали от линии 1 до линии 3. Этот перепад давлений необходимо перевести в напор, зная среднюю плотность жидкости ρ в насосе. Тогда напор будет

(11.12)

Плотность жидкости ρ при обводненной продукции скважины определяется как средневзвешенная [формула (11.6)] с учетом плотностей нефти и воды при термодинамических условиях насоса.

По данным испытаний ПЦЭН при работе на газированной жидкости установлено, что при газосодержании на приеме насоса 0 < βпр < 5 - 7% напорная характеристика практически не изменяется. При βпр > 5-7% напорные характеристики ухудшаются и в расчетный напор необходимо вносить поправки. При βпр, доходящих до 25-30%, происходит срыв подачи насоса. Вспомогательная кривая β(х) (см. рис.11.10, линия 2) позволяет сразу определять газосодержание на приеме насоса при различной глубине его спуска.

Определенные по графикам подача и необходимый напор должны соответствовать выбранному типоразмеру ПЦЭН при работе его на оптимальном или рекомендованных режимах.

205

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]