Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диоксины.doc
Скачиваний:
0
Добавлен:
05.12.2018
Размер:
186.88 Кб
Скачать

Физические и химические свойства

Молярная масса 321,98; Температура плавления 320—325 °C (не разлагается при температурах до 750 °C); растворимость в воде около 0,001 %.

Аномально высокие токсичные свойства диоксинов связаны со строением этих соединений, с их специфическими химическими и физическими свойствами.

  • Практически не растворимы в воде.

  • До температуры 900 °C на диоксины не действует термическая обработка.

  • Период их полураспада в окружающей среде приблизительно 1 год.[3]

  • Попадая в организм человека или животных, накапливаются в жировой ткани и очень медленно разлагаются и выводятся из организма (период полувыведения из организма человека составляет до 30 лет).

  • Нейтрализуется в лабораторных условиях методами дехлорирования, например, нафтолятом натрия.[3]

В настоящее время идёт поиск генетической модификации некоторых видов бактерий с целью улучшить их способности к поглощению диоксинов.[5]

Также в настоящее время для определения содержания диоксинов применяют хромато-масс-спектрометрию и анализ с помощью биотестов (CALUX)

Источники диоксинов

Источники возникновения диоксинов и пути проникновения их в живую и неживую природу весьма разнообразны. Известны попытки объяснить картину появления диоксинов в биосфере лишь лесными и степными пожарами. Это оказалось выраженным упрощением, хотя идея сама по себе не беспочвенна. Загрязнение происходит лишь при условии, что земельная растительность была обработана хлорфенольными пестицидами, а возникший пожар преобразует их в диоксинподобные соединения. Серъёзных доказательств накопления каких-либо количеств диоксинов при пожарах на необработанных территориях не найдено. Не обнаружено и доказательств биогенного образования диоксинов или их предшественников непосредственно в живой природе. Таким образом подтведилась теория их исключительно антропогенного происхождения. Появление диоксинов в окружающей среде обусловлено развитием разнообразных технологий, главным образом, в послевоенный период и в основном связано с производством и использованием хлорорганических соединений и утилизацией их отходов.

Для образования диоксинов необходимо сочетание трех условий: органика, хлор и высокая температура. Серъезной проблемой являются практически все термические процессы, так как термическое разложение технических продуктов, сжигание осадков сточных вод, муниципальных и других небезопасных при сгорании промышленных и бытовых отходов (например, ПХБ и изделия из ПВХ, целлюлозно-бумажная продукция и пластические массы) сопровождаются образованием экологически опасных количеств диоксинов. В особенности это касается аварийной обстановки, в частности, при пожарах на производстве. В результате термодеструкции синтетических материалов при пожарах возможны массовые острые и хронические отравления людей различными выделяющимися ксенобиотиками.

Опубликованы сообщения о возможности образования при сильных пожарах фосфорорганических соединений из негорючих волокон. Имеются данные, что сгорание при пожаре в г. Холмсунде (Швеция) больших количеств поливинилхлорида (ПВХ) и пластиковых ковров привело к загрязнению окружающей среды полихлорированными дибензодиоксинами (ПХДД) и полихлорированными дибензодифуранами (ПХДФ) с составом изомеров, близким к выбросам установок по сжиганию отходов.

Одно время казалось, что особенно большие количества ПХДД и ПХДФ образуются при сжигании отходов, в состав которых входят, например, ПВХ или другие широко используемые полимеры, содержащие галогены. По существу этот путь образования диоксинов может быть выражен в виде двустадийного процесса (рис. 1).

Начавшись с возникновения хлорбензолов по реакции {1}, он в дальнейшем сводится к преобразованию {2} в присутствии кислорода при более низких температурах: сначала в фенолы и дифениловые эфиры, а затем в смесь ПХДД и ПХДФ.

Экспериментальных подтверждений реалистичности этой схемы найдено уже достаточно много. Так, ещё в 1974 году было сообщено об образовании различных хлорбенозолов при пиролизе ПВХ. В работе было обнаружено образование различных хлорбензолов и ПХБ при термическом разрушении хлоралканов и хлоруглеводородов на воздухе и в инертной атмосфере при 300 - 700 С.

С 1978 года этот процесс был исследован более подробно. В 80-х годах были получены прямые свидетельства превращения ПВХ и других хлорорганических полимеров в смесь ПХДД и ПХДФ как в МСП (мусоросжигающей печи), так и модельных, в том числе пиролитических, условиях. Количество ПХДФ и ПХДД, образующихся в присутствии кислорода, в 10 - 1000 раз больше, чем в пиролитических условиях. Также выявлено прямое соответствие между количеством ПВХ в МСП и объемом диоксиновых выбросов (ранее предполагалось отсутствие микропримесей ПХДФ и ПХДД при сжигании ПВХ).

Как выяснилось, путей внесения диоксиновых ксенобиотиков только вследствие сжигания черезвычайно много. При этом в термические процессы, сопровождающиеся возникновением заметных количеств диоксинов, включаются не только хлорароматические (полихлорбензолы, ПХБ, хлорфенолы и их соли, полихлорированные дифениловые эфиры), но и хлоролефиновые соединения.

Следует отметить, что сжигание на своем дачном участке или в лесу пластмассовых бутылок, канистр, пакетов из-под сока или молока, старой мебели, пропитанной пентахлорфенолом, тоже "вносит свою лепту" в загрязнение окружающей среды диоксинами. Кроме того, при сжигании образуются и другие небезопасные соединения. Так, термическое уничтожение одноразовой посуды, пищевой пленки, углеводородных пластиков (пакеты и пр.) влечет за собой образование канцерогенных полиароматических углеводородов (ПАУ); резины - помимо ПАУ, канцерогенно опасную сажу с окислами серы; поролон, нейлон, синтетические ткани и покрытия, полиуретаны - цианиды; горение линолеума (в особенности, антистатического), изоляционных материалов, пластмассовых игрушек, полиэтиленовой тепличной пленки дает в общей сложности до 70 наименований токсических веществ, самые неблагоприятные из которых - диоксины. В целом, сжигание любых ПВХ-композиций влечёт за собой выделение большого числа диоксинов.

Есть эти вещества в выбросах металлургической и металлобрабатывающей промышленности, в пыли, уносимой ветром с могильников токсичных отходов, выхлопных газах автомобильных двигателей. Возможно возникновение диоксиновых соединений на предприятиях целлюлозно-бумажной, нефтеперерабатывающей, хлорной промышленности, при обеззараживании хлором воды, содержащей фенолы и их предшественники - лигнины, гуминовые и фульвокислоты. В этом плане экологически опасны фенолсодержащие стоки промышленных предприятий. Не менее опасны вышеописанные пожары, в частности, горение всевозможных синтетических материалов, электрооборудования. Непредсказуемые последствия для биосферы (трагический пример Индокитая) влечет за собой применение химического оружия.

По хозяйственно-территориальным признакам вышеперечисленные источники общепринято подразделять на локальные и диффузные (пространственно распределенные), а по темпам накопления в окружающей среде и объектах живой природы - на регулярные и экстремально-залповые. Диффузные источники диоксинов, с точки зрения окружающей среды, представляются более опасными. Это обусловлено двумя причинами: во-первых, изомерно-гомологическим разнообразием поступающих в систему ксенобиотиков, а во-вторых, черезвычайной трудностью обнаружения опасности до того, как она себя проявит.

Существует также классификация способов поступления диоксинов в биосферу. Согласно ей, выделяют три основные группы способов:

  1. функционирование несовершенных, экологически небезопасных технологий производства продукции химической, целюллозно-бумажной, металлургической промышленности. Для них всех характерны диоксинсодержащие отходы и сточные воды в период регулярной деятельности, а также большие дополнительные выбросы в случае аварийной обстановки;

  2. использование химической или иной продукции, содержащей примеси (диоксинов или их предшественников) и/или продуцирующей их в процессе использования или аварии;

  3. несовершенство и небезопасность технологии уничтожения, захоронения и преобразования отходов.

Металлургическая промышленность

В последние годы выявлена новая группа локальных источников диоксинов. Как оказалось, они образуются на металлургических заводах, например, при электрохимическом получении никеля и магния из их хлоридов, в сталелитейных производствах, при переплаве лома железа, меди и других металлов , при производстве алюминия и т.д. ПХДД и ПХДФ находят повсюду - в аквафауне, донных отложениях, а также в сточных водах этих производств, и почве окружающих территорий, в воздушном бассейне и т.д.

Появление ПХДД и ПХДФ при производстве магния и рафинированного никеля было обнаружено впервые в Норвегии. Диоксины образуются в основном при обработке окатышей кокс-оксида магния газообразным хлором при 700-800°С, после чего электролизом обезвоженного хлорида магния получают металл. Ежегодные выбросы предприятия с водами составляли несколько сотен граммов в ДЭ. Большие выбросы ПХДД и ПХДФ при производстве рафинированного никеля возникают на высокотемпературной стадии превращения хлорида никеля в его оксид. В донных отложениях вблизи завода до настоящего времени находят ПХДФ в концентрации до 15 ppt.

В бывшем СССР внимание к этой проблеме пока не привлекалось. В качестве примера источника вероятного образования ПХДД и ПХДФ упоминается производственная деятельность Кировградского медеплавильного комбината (Екатеринбургская область), на котором перерабатываются отходы кабельной и радиоэлектронной промышленности. Одной из подготовительных стадий является освобождение медного провода от полимерной изоляции, в том числе ПВХ. Это происходит путем прямого выжигания изоляции на открытой площадке.

Назовем также возможность образования диоксинов в других крупнотоннажных технологиях металлургической промышленности. Так, способ промышленного получения хлористого алюминия, основанный на хлорировании каолиновых брикетов, предусматривает, что хлорирование проводится в непрерывно действующей шахтной печи газообразным хлором в присутствии СО:

Al2O3 + 3Cl2 + 3CO = 2AlCl3 + 3CO2

Для регулирования температуры в печь добавляют кусковой кокс. Реакционные газы, выходящие из печи хлорирования при 400 - 450 C, кроме AlCl3, содержат другие хлориды. Получение 1 т. очищенного хлористого алюминия сопровождается образованиеим 650 кг прохлорированных брикетов и 270 кг различных шламов, содержащих микропримеси диоксина

В несколько меньших количествах ПХДФ найдены также в хлоридах меди Cu(I) и Cu(II). Данные об обнаружении различных ПХДФ в коммерческом FeCl3 недавно были подтверждены.

Микропримеси ПХДФ возникают в процессе синтеза, осуществляющегося путем высокотемпературного хлорирования металла, к которому обычно добавляют металлолом (температура процесса 650°С в производстве FeCl3 и 750...800°С в производстве AlCl3). Источником ПХДФ являются органические вещества, неизбежно сопутствующие вторичному металлу - смазочные масла, остатки охлаждающей жидкости на стружке и т.д. В бывшем СССР FeCl36Н2О производится на Уральском ПО "Галоген" (Пермь), Сакском химическом заводе и на Крымском ПО "Химпром", однако данные об определении в них примесей ПХДФ не известны.

Целлюлозно-бумажное производство

Значительные количества диоксинов образуются в целлюлозно-бумажной промышленности, часть технологий которой восходит ко второй половине прошлого века. В основном это происходит на стадии делигнификации древесины. Поскольку лигнин (а это четверть древесной массы) содержит фенольные фрагменты, образование хлорированных фенолов и феноксифенолов - предшественников диоксинов ПХДД и ПХДФ - в процессе хлорирования лигнина неизбежно. Отбеливание целлюлозы осуществляется с использованием хлора и его соединений - оксида хлора, гипохлоригов, хлоритов и хлоратов. Кроме того, диоксины могут вноситься в отходы этого производства при обработке шлама с помощью ПХФ и его соли.

Продукция и отходы целлюлозно-бумажной промышленности рассматривались как возможный источник загрязнения окружающей среды диоксинами еще в 1974 г. Если учесть масштабы потребления этой отраслью хлора, предположение было отнюдь не беспочвенным (например, только Швеция расходовала на эти цели половину потребляемого хлора). То же относится и к сбросам, поскольку на 50 млн т беленой целлюлозы, производимой в мире ежегодно, приходится 250 тыс. т хлорорганических отходов, поступающих в окружающую среду. Тем не менее следующее десятилетие предположение продолжало оставаться гипотезой.

Подтверждение было получено осенью 1985 г., когда в США были обнаружены 2,3,7,8-ТХДД и 2,3,7,8-ТХДФ в осадках целлюлозного производства, а в Швеции были найдены относительно высокие уровни и специфическое распределение гомологов и изомеров этих диоксинов в крабах, обитающих вблизи сбросов целлюлозно-бумажного производства. Таким образом, к 1986 г. отбеливающие предприятия оказались в поле зрения официальных инстанций и научных кругов США, Швеции, Канады, Германии и др.

Последующие исследования, часть из которых была обнародована в 1987-1988 гг. на научных диоксиновых конференциях в Лас Вегасе и в Умеа, показали, что диоксины действительно присутствуют по всей технологической цепи целлюлозно-бумажной промышленности. Они найдены в самой пульпе, в фильтрате и отфильтрованной массе (до 40 ppt), в твердых и жидких отходах производства (до 400 ppt), а также отходящих газах после их сжигания. В отходах целлюлозно-бумажной промышленности обнаруживают до 22 различных изомеров и гомологов ПХДД и ПХДФ с числом атомов хлора от 4 до 8, включая 12 из числа наиболее токсичных. Характерно, что в этих смесях самый токсичный 2,3,7,8-ТХДД представлен в заметных количествах. Диоксины находят также в готовой древесной продукции и бумаге, причем не в газетной, а именно в "белой". Наконец, повышенные концентрации диоксинов обнаружены в организмах рыб, крабов и других представителей аквафауны, обитающих вблизи стоков предприятий.

Предприняты исследования механизма образования ПХДД и ПХДФ в производственных процессах, характерных для выпуска целлюлозы и бумаги. Хотя удалось выявить стадии, где диоксины образуются в наибольшей степени, в целом механизмы возникновения диоксинов пока не ясны. Обнаружились, однако, существенные различия в уровне образующихся диоксинов не только от процесса к процессу, но и от предприятия к предприятию. Тем не менее, во многих странах уже внесены усовершенствования в технологические процессы производства целлюлозы и бумаги, и они позволили резко снизить содержание ПХДД и ПХДФ и в продукции и в выбросах предприятий.

Нефтепереработка

Примеси ПХДД и ПХДФ были обнаружены впервые в выбросах нефтеочистных сооружений в 1989 г. Их связывают с процессом каталитического риформинга, а конкретно, со стадией регенерации катализатора. Последняя сводится к отжигу кокса в контролируемой кислородной атмосфере при 380-530°С с последующим восстановлением его каталитической активности добавлением в струю газа хлорированных соединений (CCl4, трихлорэтан, HCl). Дополнительный анализ проблемы позволил выявить ту ступень процесса, когда образование ПХДД и ПХДФ наиболее вероятно. В газе, используемом при регенерации катализатора, были обнаружены нехлорированный дибеизофуран и другие ароматические углеводороды. Это позволило предположить, что образование ПХДФ и ПХДД происходит путем хлорирования углеводородов при каталитическом влиянии окисленных стенок железных трубопроводов. Гипотеза была проверена в модельных экспериментах.

Бумага

Среди продукции, используемой в быту, бумага относится к той, что является не источником, а лишь носителем диоксинов. Диоксины на уровне ppt найдены в фильтровальной (в том числе в фильтрах для кофе и чая) и упаковочной бумаге, бумажных салфетках, детских пеленках, косметических тканях и т.д. В смеси диоксинов представлены все Cl4 - Cl8 ПХДД, причем высокотоксичный 2,3,7,8-ТХДД - в относительно больших количествах. Особенно высоко содержание ПХДД и ПХДФ в бумаге, изготавливаемой из вторсырья. В целом, примерно 20% ПХДД и ПХДФ, находимых в бумажной продукции, - это изомеры с фрагментом 2,3,7,8-Cl4.

Бытовое использование бумаги неизбежно сопровождается переходом диоксинов непосредственно в пищу (кофе, молоко, жиры, чай и т.д.), а затем в организм. Особенно опасно применение диоксин-содержащей бумаги в детских пеленках, гигиенических тампонах, носовых платках и т.д., поскольку кожные покровы и слизистые ткани эффективно извлекают из нее диоксины. В нижеследующей таблице в качестве примера приведены некоторые данные, относящиеся к содержанию ПХДФ и ПХДД в бумаге, обращающейся в быту. Они, по существу, относятся к периоду (1988 г.), когда в западных странах начали действовать программы снижения содержания диоксинов в продукции целлюлозно-бумажной промышленности.

Питьевая вода

Вода как продукт, который особенно широко используется людьми для самых различных целей, также может быть подвержена загрязнению диоксинами. Сложность вопроса состоит, однако, в многообразии источников подобных загрязнений. Они могут быть как естественными, так и техногенными, однако чаще всего комбинированными. Это серьезно затрудняет борьбу с диоксиновыми загрязнениями вод. Если обратиться к отечественной практике, то следует подчеркнуть, что существует немало городов, где диоксины сбрасываются в водные источники промышленными предприятиями. Однако имеется множество городов, где главный путь появления ПХДФ и ПХДД - это та или иная форма новообразования диоксинов непосредственно в питьевой воде.

Образование хлорфенолов при хлорировании воды, содержащей органические примеси, может фиксироваться и органолептически, поскольку хлорфенолы обладают характерным неприятным запахом. Это явление хорошо известно в нашей стране, где хлорирование является стандартной процедурой водоподготовки, а измерение содержания хлорфенолов техническими средствами выполняется чрезвычайно редко. Косвенно, однако, оно отражено и в ГОСТе на питьевую воду: ПДК фенола в нехлорируемой воде составляет 0,1 мг/л, а в хлорируемой - 0,001 мг/л.

Молекулярный хлор как первопричина заражения питьевой воды диоксинами ПХДФ и ПХДД - довольно распространенный диффузный источник этих токсикантов. Это явление нехарактерно лишь для тех стран, где обеззараживание осуществляют путем обработки воды озоном или УФ-облучением или же хлорирование питьевой воды производят лишь в чрезвычайных ситуациях при возникновении реальной опасности эпидемии. Там же, где обеззараживание питьевой воды молекулярным хлором является одним из ключевых элементов противоэпидемической водо под готовки, возникновение ПХДД и ПХДФ неизбежно. Диоксины (главным образом ПХДФ) действительно были обнаружены недавно в шламе после водоочистки с помощью хлора.

Уничтожение, захоронение и преобразование отходов

Опыт последних десятилетий показал, что промышленные и иные отходы, предназначенные для выведения из оборота цивилизации, также могут отказаться черезвычайно опасными для человека и природы, в особенности те, что содержат диоксины или их предшественники. Опасность возникает не только на этапе сжигания, но и на этапах захоронения и складирования. Наконец, не менее опасными могут оказаться попытки частичной или полной утилизации отходов.

Из практики последних 10-15 лет следует, что отходы особенно опасны в тех ситуациях, когда вопрос о "судьбе" переносимых ими или порождаемых диоксинов предварительно не рассматривается. Случаи такого рода не были редки в прошлые годы, сохранились они и в наши дни.

Термическое уничтожение отходов

Долгие годы считалось, что термические технологии, широко используемые в индустриально развитых странах для уничтожения бытовых и нетоксичных промышленных отходов, а также установки для уничтожения токсичных отходов и обеззараживания сточных вод - наиболее эффективный способ их обезвреживания, в том числе с попутным получением энергии. В рамках этих представлений, вредные и/или ненужные вещества при высокой температуре окисляются кислородом воздуха в нетоксичные и легко удаляемы- продукты. Между тем, термические технологии - это и стабильный, и очень мощный источник поступления диоксинов в живую и неживую природу. Размеры бытовых отходов, образуемых цивилизацией, очень велики.

В настоящее время проблема загрязнения окружающей среды диоксинами из-за их генерации в печах для сжигания бытовых и технических отходов осознана во всех промышленно развитых странах - США, Канаде, Великобритании, Италии, Германии, Франции, Бельгии, Японии, Австрии, Дании, Норвегии, бывшей Чехо-Словакии. Подготовлены подробные обобщающие документы на эту тему национальными и международными официальными органами. По существу, лишь в бывшем СССР эта проблема оказалась незамеченной многие годы.

Оценка общих источников хлора в бытовом мусоре привела к выводу, что в целом хлор присутствует во всех компонентах мусора. Особенно большие количества его содержатся в бумаге (четверть) и пластмассах (половина). При этом бумага содержит от 1/3 до половины хлора в водорастворимой форме, тогда как в пластмассах он присутствует главным образом (90%) в водонерастворимой форме.