Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекции / Частота Найквиста

.docx
Скачиваний:
72
Добавлен:
22.02.2014
Размер:
28.25 Кб
Скачать

Частота Найквиста — в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации сигнала полезную информацию будут нести только частоты ниже частоты Найквиста. Частоты выше частоты Найквиста являются зеркальным отображением нижних частот. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть оцифрован и затем восстановлен без искажений.

К примеру, в аудио компакт-дисках используется частота дискретизации 44100 герц. Частота Найквиста для них — 22050 герц, она ограничивает верхнюю полосу частот, до которой звук может быть воспроизведён без искажений.

Но это - теоретический предел. На практике есть некоторые нюансы. При оцифровке аналогового сигнала с широким спектром необходимо обеспечить срез спектра аналогового сигнала на частоте Найквиста при помощи фильтра очень высокого порядка, чтобы избежать зеркального отражения спектра для частот, лежащих выше частоты Найквиста. Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а колоколообразную форму и образуется некоторая полоса "затухания". Поэтому максимальную частоту спектра дискретизуемого сигнала принимают несколько ниже частоты Найквиста, чтобы обеспечить надёжное подавление фильтром спектра дискретизуемого сигнала.

Теоре́ма Коте́льникова (в англоязычной литературе — теорема Найквиста — Шеннона или теорема отсчётов) гласит, что, если аналоговый сигнал имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой строго большей удвоенной максимальной частоты спектра :

где — -верхняя частота в спектре, или (формулируя по-другому) по отсчётам, взятым с периодом , чаще полупериода максимальной частоты спектра :

Пояснение

Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́й характеристике точек разрыва. Именно это подразумевает понятие «спектр, ограниченный частотой ».

Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и, обычно, имеют во временно́й характеристике разрывы. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова вытекают 2 следствия:

Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой , где — максимальная частота, которой ограничен спектр реального сигнала.

Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда

где — функция sinc. Интервал дискретизации удовлетворяет ограничениям Мгновенные значения данного ряда есть дискретные отсчёты сигнала .

стория открытия

Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоеной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат.[1] О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом[2][3]: «Любую функцию f(t), состоящую из частот от 0 до fc, можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через секунд». Независимо от него эту теорему в 1949 (через 16 лет!) году доказал Клод Шеннон[4], поэтому в Западной литературе эту теорему часто называют теоремой Шеннона. В 1999 году Международный научный фонд Эдуарда Рейна (Германия) признал приоритет В. А. Котельникова, наградив его премией в номинации «за фундаментальные исследования» за впервые математически точно сформулированную и доказанную в аспекте коммуникационных технологий теорему отсчётов.[5] Исторические разыскания показывают, однако, что теорема отсчётов как в части утверждения возможности реконструкции аналогового сигнала по дискретным отсчётам, так и в части способа реконструкции, рассматривалась в математическом плане многими учеными и ранее. В частности, первая часть была сформулирована ещё в 1897 году Борелем.[6]

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке лекции