
- •1.Архітектура сапр.
- •2.Характеристика мультипроцесорних комп’ютерних систем.
- •3.Топологія локальних мереж. Види і коротка характеристика
- •1.Реляційна модель даних. Загальна характеристика. Цілісність сутності і посилань.
- •2.Алгоритм шифрування даних гост 28147-89. Основні характеристики алгоритму. Основні режими роботи алгоритму(призначення, схема роботи, переваги та недоліки кожного режиму)
- •3.Схемотехніка зовнішніх інтерфейсів еом. Шини і2с, послідовний паралельний порт, шина usb.
- •4.Мережні обладнання: комутатор, концентратор, шлюз, міст, маршрутизатор. Функції та стисла характеристика).
- •5.Характеристика та структура матричних процесорів.
- •1.Дешифратори, типи, побудова, характеристики
- •3.Ієрархічні системи. Ієрархічні структури даних. Маніпулювання даними. Обмеження цілісності.
- •4.Модель мультипроцесорних комп’ютерних систем із загальною пам’яттю.
- •1.Двійкові однорозрядні суматори.
- •2.Схема Ель-Гемаля. Процедура шифрування. Процедура розшифрування.
- •3.Семантичне моделювання даних,er – діаграми. Семантичні моделі даних.
- •4.Розімкнена мережева модель систем оперативної обробки інформації.
- •5.Технологія бездротової передачі даних Wi-Fi.
- •2.Характеристика мультипроцесорних комп’ютерних систем з перехресною комутацією.
- •3.Високовиробничі технічні засоби сапр та їх комплексування.
- •4.Проектування реляційних баз даних. Проектування реляційних бд із використанням нормалізації.
- •1.Двійково – десяткові суматори.
- •4.Синтез систем оперативної обробки інформації із заданою вартістю.
- •5.Технологія 100vg-AnyLan (середовище передачі інформації в мережі, основні технічні характеристики, апаратура, топологія, метод доступу).
- •2.Характеристика конвеєрного процесора для векторної обробки інформації.
- •4.Загальні поняття реляційного підходу до організації бд. Основні концепції і терміни.
- •1.Однокристальні восьмирозрядні мікропроцесори.
- •3.Фундаментальні властивості відношень. Відсутність кортежів-дублікатів. …
- •2.Замкнута мережева модель систем оперативної обробки інформації з обмеженим числом заявок.
- •3.Основні функції субд. Управління буферами оперативної пам’яті. Управління трансакціями.
- •4.Абстрактні моделі захисту інформації: Сазерлендская модель. Модель Кларка-Вільсона.
- •4.Синтез соо інформації із заданою вартістю.
- •1.Кабельні системи: коаксіальний кабель, «кручена пара», оптоволоконний кабель.
- •2.Побудова мережених моделей систем оперативної обробки інформації.
- •3.Робочі станції – сервери для сапр.
- •4.Пристрої цифрового керування. Керуючі автомати зі схемною логікою.
- •1.Тупики, розпізнавання і руйнація. Метод тимчасових міток. Журналізація…
- •2.Технологія fddi (середовище передачі інформації, основні технічні характеристики, метод доступу).
- •5.Схеми порівняння і контролю.
- •1.Комбінаційні функціональні вузли комп’ютерної схемотехніки. Мультиплексори, демультиплексори.
- •2.Склад, організація та режими роботи технічних засобів сапр.
- •5.Технологія Gigabit Ethernet (середовище передачі інформації, основні технічні.Характеристики).
- •1.Технологія Token-Ring (апаратура, топологія, основні технічні характеристики, метод доступу).
- •2.Характеристика асоціативних комп’ютерних систем.
- •3.Криптосистема шифрування даних rsa. Процедура шифрування. Процедура розшифрування.
- •5.Паралельні багаторозрядні суматори.
- •3.Асиметричні криптосистеми, концепція криптосистеми з відкритим ключом: недоліки симетричних криптосистем, необхідні умови для ака, характерні особливості ака, узагальнена схема акс,…
- •5.Технологія Arcnet (апаратура, топологія, основні технічні характеристики, метод доступу.
- •3.Мережні обладнання: комутатор, концентратор, шлюз, міст, маршрутизатор.
- •4.Характ-ка процесорної матриці з локальною пам’яттю.
- •1.Алгоритми електронного цифрового підпису. Поняття аутентифікації. Призначення ецп…
- •2.Схеми для виконання логічних мікрооперацій.
- •3.Характеристика мультипроцесорних комп’ютерних систем з багатовходовими озп.
- •4.Локальне периферійне обладнання сапр.
- •1.Архітектура сапр
- •2.Технологія 100vg-AnyLan .
- •3.Характеристика функціонально розподілених комп’ютерних систем.
- •1.Семантичне моделювання даних,er – діаграми. Семантичні моделі даних.
- •2.Постійна пам’ять комп’ютерів. Мікросхеми пам’яті на ліз мон-транзисторах.
- •3.Характеристика однорідних комп’ютерних систем.
- •1.Абстрактні моделі захисту інформації: модель Біба, модель Гогена-Мезигера.
- •4.Модель мультипроцесорних комп’ютерних систем із загальною пам’яттю.
- •5.Схемотехніка зовнішніх інтерфейсів еом. Шини і2с, послідовний паралельний порт, шина usb.
- •1.Керування транзакціями, серіалізація. Транзакція і цілісність баз даних. Ізольованість користувачів.
- •2.Дешифратори, типи, побудова, характеристики.
- •2.Технологія Gigabit Ethernet (середовище передачі інформації, основні технічні.Характеристики.
- •1.Комбінаційні функціональні вузли комп’ютерної схемотехніки.Мультиплексори, демультиплексори.
- •3.Високовиробничі технічні засоби сапр та їх комплексування.
- •1.Однокристальні восьмирозрядні мікропроцесори.
- •2.Загальні поняття реляційного підходу до організації бд. Основні концепції і терміни.
- •4.Фундаментальні властивості відношень. Відсутність кортежів-дублікатів.
- •1.Характеристика мультипроцесорних комп’ютерних систем з перехресною комутацією.
- •2.Проектування бд. Створення бд.
- •3.Призначення пакетів і їх структура.
- •4.Єдинонаправленні функції. Визначення єдинонаправлених функцій.
- •5.Двійкові однорозрядні суматори.
- •2.Технологія fddi (середовище передачі інформації, основні технічні характеристики, метод доступу).
- •3.Проектування реляційних баз даних. Проектування реляційних бд із використанням нормалізації.
- •4.Характеристика та структура матричних процесорів.
- •5.Статичні запам’ятовуючі пристрої.
1.Комбінаційні функціональні вузли комп’ютерної схемотехніки.Мультиплексори, демультиплексори.
Mультиплексор
(коммутатор, селектор, переключатель)
— устройство, имеющее несколько
сигнальных входов, один или более
управляющих входов и один выход.
Мультиплексор позволяет передать сигнал
с одного из входов на выход; при этом
выбор желаемого входа осуществляется
подачей соответствующей комбинации
управляющих сигналов. Аналоговые и
цифровые мультиплексоры значительно
различаются по принципу работы. Первые
электрически соединяют выбранный вход
с выходом (при этом сопротивление между
ними невелико — порядка единиц/десятков
ом). Вторые же не образуют прямого
электрического соединения между
выбранным входом и выходом, а лишь
«копируют» на выход логический уровень
('0' или '1') с выбранного входа. Мультиплексоры
сокращённо обозначаются как MUX (от англ.
multiplexer), а также MS (от англ. multiplexer
selector).Аналоговые мультиплексоры иногда
называют ключами. Демультиплексор
— устройство, в котором сигналы с одного
информационного входа поступают в
желаемой последовательности по нескольким
выходам в зависимости от кода на адресных
шинах. Таким образом, демультиплексор
в функциональном отношении противоположен
мультиплексору. Демультиплексоры
обозначают через DMX или DMS. Если между
числом выходов и числом адресных входов
действует соотношение n=2m для двоичных
демультиплексоров или n=3m для троичных
демультиплексоров, то такой демультиплексор
называют полным. Если n<2m для двоичных
демультиплексоров или n<3m для троичных
демультиплексоров, то демультиплексор
называют неполным. Функции демультиплексоров
сходны с функциями дешифраторов.
2.Модель мультипроцесорних комп’ютерних систем з індивідуальною пам’яттю. Вычислительные системы, содержащие несколько процессоров, связанных между собой и с общим для них комплектом внешних устройств, называются мультипроцессорными системами (МПС). Производительность МПС увеличивается по сравнению с однопроцессорной системой за счет того, что мультипроцессорная организация создает возможность для одновременной обработки нескольких задач или параллельной обработки различных частей одной задачи. В МПС с индивидуальной памятью каждый из процессоров обращается в основном к своему модулю памяти. Для обмена данными между подсистемами «процессор — модуль памяти» в процессорах предусмотрены блоки обмена, обеспечивающие передачу сегментов информации между общей памятью и модулем памяти. При этом блок обмена может работать как селекторный канал: операция обмена инициируется процессором, и передача данных выполняется с параллельной работой последнего. Принцип индивидуальной памяти позволяет исключить коммутаторы в интенсивно используемом канале «процессор - модуль памяти», вследствие чего увеличивается номинальное быстродействие процессоров и уменьшаются затраты оборудования по сравнению с системами с общей памятью. Отрицательным последствием разделения памяти между процессорами является потеря ресурсов быстродействия в процессе обмена информацией между модулями памяти и общей памятью системы. Потери возникают, во-первых, из-за возможных приостановок работы процессоров для ожидания моментов окончания обмена данными с общей памятью и, во-вторых, из-за дополнительной загрузки модулей памяти операциями обмена. Если, работа каждого процессора МПС связана с использованием в основном ограниченного подмножества данных и обращение к остальным данным происходит сравнительно редко, то индивидуализация памяти приводит к экономии оборудования и обеспечивает высокое номинальное быстродействие процессоров в системе.