
- •Общие указания Охрана труда и техника безопасности при проведении лабораторных работ
- •Требования к оформлению отчетов
- •Библиографический список
- •Обработка результатов измерений
- •Правила обработки результатов прямых Измерений
- •I. Учет случайных составляющих неопределенности (погрешности)
- •II. Учет неопределенностей, обусловленных систематическими ошибками
- •III. Промахи
- •IV. Доверительный интервал в общем случае
- •Обработка результатов косвенных измерений
- •Работа 60: резонанс в электрическом колебательном контуре
- •1. Цель работы
- •2. Основные теоретические положения
- •Принцип метода измерений и рабочая формула
- •Измеряемый объект
- •Описание лабораторной установки
- •Порядок выполнения работы
- •Вычисления и обработка измерений
- •8. Контрольные вопросы
- •Работа 61. Измерение диэлектрической восприимчивости вещества методом резонанса в колебательном контуре
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Измеряемый объект
- •4. Метода измерений, схема установки и рабочая формула
- •5. Порядок выполнения работы
- •6. Контрольные вопросы
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерений и рабочая формула
- •4. Измеряемый объект
- •5. Экспериментальная установка в статике и динамике
- •6. Порядок выполнения работы
- •6. Контрольные вопросы
- •Работа 63. Определение показателя преломления стекла интерференционным методом
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерения и рабочая формула
- •4. Измеряемый объект
- •5. Экспериментальная установка
- •6. Порядок выполнения работы
- •7. Наставление по обработке результатов и выводу формул
- •8. Контрольные вопросы
- •Работа 64. Определение длины волны излучения лазера при помощи бипризмы френеля
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Измеряемый объект
- •4. Принцип метода измерения
- •5. Экспериментальная установка в статике и динамике
- •6. Порядок выполнения работы
- •7. Обработка результатов измерений
- •8. Контрольные вопросы
- •Работа 65. Определение радиуса кривизны линзы при помощи наблюдения интерференционной картины «кольца ньютона»
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода и рабочая формула
- •4. Измеряемый объект
- •5. Описание лабораторной установки
- •6. Порядок выполнения работы
- •7. Обработка результатов измерений
- •8. Контрольные вопросы
- •Работа 66. Исследование дисперсии света на стеклянной призме
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Принцип метода измерения и рабочая формула
- •4. Измеряемый объект
- •5. Установка в статике
- •6. Настройка спектроскопа (установка в динамике)
- •7. Порядок выполнения работы
- •8. Контрольные вопросы
- •Работа 67. Исследование спектра ртутной лампы при помощи дифракционной решетки
- •1. Цель работы
- •2. Основные теоретические положения
- •3. Измеряемый объект
- •4. Описание лабораторной установки
- •5. Порядок выполнения работы
- •6. Контрольные вопросы
- •Работа 68. Изучение дифракционной решетки и определение длин волн линий ртути
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Измеряемый объект
- •4. Принцип метода и рабочая формула
- •5. Экспериментальная установка
- •6. Порядок выполнения работы
- •7. Обработка результатов измерений
- •8. Контрольные вопросы
- •Работа 69. Определение длины световой волны лазера с помощью дифракционной решетки
- •1. Цель работы
- •2. Краткая теория исследуемого вопроса
- •3. Измеряемый объект
- •4. Принцип метода измерения и рабочая формула
- •5. Экспериментальная установка в статике и динамике
- •6. Порядок выполнения работы
- •7. Обработка результатов измерений
- •8. Контрольные вопросы
- •Работа 70. Изучение дифракции фраунгофера на одной и двух щелях
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерения и рабочая формула
- •4. Измеряемый объект
- •5. Экспериментальная установка
- •6. Порядок выполнения работы
- •8. Наставление по обработке результатов и выводу формул
- •9. Контрольные вопросы
- •Работа 71. Измерение степени поляризации частично поляризованного света
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Экспериментальная установка для измерения степени поляризации частично поляризованного света в статике
- •4. Принцип метода измерения (действия установки) и рабочая формула
- •5. Порядок выполнения работы
- •6. Контрольные вопросы
- •Работа 72. Изучение поляризации света
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерения и рабочая формула
- •4. Измеряемый объект
- •5. Экспериментальная установка
- •6. Порядок выполнения работы
- •8. Наставление по обработке результатов и выводу формул
- •9. Контрольные вопросы
- •Работа 73. Ознакомление с работой газового лазера
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерения и рабочие формулы
- •4. Измеряемый объект
- •5. Экспериментальная установка в статике и динамике
- •6. Порядок выполнения работы
- •7. Обработка результатов измерения
- •8. Вопросы для проверки
- •Работа 74. Измерение глубины царапин и высоты выступов на поверхностипри помощи микроинтерферометра линника
- •1. Цель работы
- •2. Краткая теория исследуемого явления
- •3. Принцип метода измерения и рабочая формула
- •4. Измеряемый объект
- •5. Экспериментальная установка
- •6. Порядок выполнения работы Настройка микроинтерферометра
- •Измерения на интерферометре
- •Приближенное измерение глубины канавок
- •Измерение с помощью винтового окулярного микрометра мов-1-16х
- •Измерение величины интервала между полосами
- •Измерение величины изгиба полос
- •Вычисление высоты неровности
- •7. Наставление по обработке результатов и выводу формул
- •8. Контрольные вопросы
- •Содержание
8. Вопросы для проверки
1. В чем заключается отличие спонтанного и стимулированного излучения света?
2. Что такое дифракция света?
3. Что такое инверсная населенность уровней?
4. Каковы свойства лазерного излучения?
Работа 74. Измерение глубины царапин и высоты выступов на поверхностипри помощи микроинтерферометра линника
1. Цель работы
Целью работы является определение высоты неровностей плоских поверхностей интерференционным методом.
2. Краткая теория исследуемого явления
Интерференцией называют особый тип взаимодействия волн, возникающий при наложении двух (или более) волн и сопровождающийся перераспределением энергии волн в пространстве вследствие их взаимного усиления в одних точках пространства и взаимного ослабления в других.
Интерференция присуща волнам разной природы – как механическим, так и электромагнитным (см. рис. 1). В частности, этим свойством обладает свет – электромагнитные волны видимого диапазона, имеющие длину волны от 0,4 мкм до 0,7 мкм.
λ
A
V
Рис.
1.
При интерференции световых волн возникает типичная интерференционная картина чередующихся максимумов и минимумов освещенности.
Для наблюдения
интерференционной картины в какой-либо
области необходимо, чтобы волны,
приходящие в каждую ее точку, были
когерентными,
т.е. имели постоянную (не меняющуюся с
течением времени) разность фаз, одинаковую
частоту и одинаковое направление
колебаний вектора
(одинаковую
поляризацию).
Волна, рассматриваемая в фиксированной точке пространства представляет собой колебания, в случае электромагнитной волны – это колебания векторов напряженностей электрического и магнитного полей. Поэтому, результат сложения когерентных волн есть результат сложения гармонических колебаний равной частоты. По теореме о сложении колебаний результат такого сложения зависит не только от их амплитуд А1 и А2, но и от разности фаз δ (см. рис. 2). Для амплитуды суммарного колебания А справедливо:
.
А t А t
A
t
t
A
A
t
A t
A = A1 + A2 Δ = 0 + 2πk; cosδ = 1 а) |
A = A1 – A2 Δ = π + 2πk cosδ = – 1 б) |
Рис. 2. |
Независимые
источники естественного света (две
лампочки или даже два различных участка
одного и того же светящегося тела) не
создают когерентных волн, а, следовательно,
и интерференционной картины по следующей
причине. Свет испускается отдельными
атомами светящегося источника; при этом
каждый атом излучает непрерывно только
в течение некоторого конечного промежутка
времени (среднее время излучения атома
около 10-8
с). В один момент времени свет испускает
одна группа атомов, а в последующий
момент времени – другая. Поэтому
начальная фаза световых колебаний,
испускаемых одним и тем же источником
света, быстро и беспорядочно меняется
за время наблюдения. При наложении света
от таких источников мгновенные
интерференционные картины сменяют одна
другую настолько часто, что это
воспринимается глазом как равномерная
освещенность, т.к. инерционность глаза
составляет примерно 0,05 с. В этом случае
в формуле (1б) фигурирует среднее значение
,
которое равно 0.
Когерентные световые волны можно получить путем разделения светового потока, исходящего из одной точки (т.е. от группы близлежащих атомов), на несколько потоков посредством частичного отражения и преломления волн.
Применяя этот прием, заставляют интерферировать части одной и той же волны, идущие от одного источника, прошедшие различный путь и снова сошедшиеся.
Так, параллельный пучок света, падая нормально к грани клина, (см. рис. 3) отражается как от верхней, так и от нижней грани. Эти отраженные пучки света когерентны. Поэтому на поверхности клина будут наблюдаться интерференционные полосы. Так как угол клина мал, то отраженные пучки света 1 и 2 (рис. 3) будут практически параллельны.
Рис. 3.
Между частями
одной и той же волны возникает некоторая
постоянная во времени оптическая
разность хода
равная
,
где
–
геометрическая разность хода,
–
показатель преломления среды.
Существование
оптической разности хода
приводит к разности фаз колебаний δ.
Эти величины связаны формулой:
.
Если
равна четному числу полуволн или целому
числу длин волн
:
,
(1)
где k – целое число, то интерферирующие волны приходят в точку наблюдения в одинаковых фазах и максимально усиливают друг друга. В этой точке наблюдается максимум освещенности.
Если
равна нечетному числу полуволн:
,
(2)
то интерферирующие волны встречаются в противоположных фазах и максимально ослабляют друг друга. В этой точке освещенность минимальна.
Темные полосы видны на тех участках клина, для которых разность хода лучей кратна нечетному числу половин длин волн.