
- •Основные принципы построения эвм.
- •I. Связь ядра и внешних устройств:
- •II. Способ построения ядра:
- •Системы счисления, используемые в эвм.
- •Представление чисел в позиционной системе счисления.
- •Перевод чисел из двоичной(восьмеричной, шестнадцатеричной) системы счисления в десятичную систему счисления.
- •Перевод чисел из десятичной системы счисления в двоичную(восьмеричную, шестнадцатеричную) систему счисления.
- •Перевод чисел из шестнадцатеричной системы счисления в двоичную.
- •Перевод чисел из двоичной системы счисления в шестнадцатеричную.
- •Прямой, обратный, дополнительный коды.
- •Дополнительный код.
- •Переполнение разрядной сетки.
- •Формы представления чисел в эвм.
- •Форма представления чисел с фиксированной точкой.
- •Форма представления чисел с плавающей точкой.
- •Логические функции.
- •Регистры.
- •Приём и передача информации из регистра в регистр.
- •Запись информации в с одного регистра на другой регистр.
- •Сдвиг информации в регистре.
- •Дешифратор.
- •Сумматор.
- •Счётчики.
- •Принципы организации памяти эвм.
- •Иерархическая структура памяти.
- •Основные этапы выполнения машинной команды.
- •Машинные команды (команды эвм).
- •Микропрограмма выполнения четырёхадресной команды. Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •1 Этап. Выбор машинной команды.
- •Способы адресации.
- •П коп Аi рямая адресация.
- •Непосредственная адресация.
- •Косвенная адресация.
- •Регистровая адресация.
- •Микропрограмма выполнения двухадресной команды формата регистр-регистр (r-r). Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •1 Этап. Выбор машинной команды.
- •Базовая адресация.
- •Индексная адресация.
- •Базово-индексная адресация.
- •Микропрограмма выполнения двухадресной команды. Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •Косвенно-регистровая адресация.
- •Классификация микропрограммных устройств управления
- •Выполнение перехода на микропрограммном уровне.
- •Микропрограмма операции вычитания
- •Алу для выполнения операции умножения над числами с фиксированной точкой, представленных в прямом коде
- •Структурная схема алу для выполнения операции умножения над числами с фиксированной точкой, представленных в прямом коде (по 2 методу)
- •1 Этап.
- •2 Этап.
- •Деление чисел с фиксированной точкой. Деление с восстановлением остатка и без.
- •1 Этап.
- •2 Этап.
- •3 Этап.
- •Деление с восстановлением остатка.
- •Деление без восстановления остатка.
- •Структурная схема алу . (Для 2-ого случая).
- •Особенности выполнения операций над числами с плавающей точкой.
- •Организация системы прерывания
- •Общие правила организации прерывания.
- •Механизм реализации прерываний с помощью «старых» и «новых» ячеек
- •Стековый механизм организации
- •Внешние прерывания
- •Классификация систем прерывания
- •Организация в/в
- •Функционирование селекторного канала
- •Выполнение операции «запись»
- •Выполнение операции «чтение»
- •Организация мультиплексного канала
- •Сеанс начальной выборки
- •Сеанс связи по запросу ву
- •Выполнение операции «запись»
- •Выполнение операции «чтение»
- •Магистральный ввод/вывод
- •Радиальный ввод/вывод
- •Микропроцессоры.
- •Системные интерфейсы
- •Классификация вычислительных систем.
- •1.Многомашинные комплексы.
- •Классификация многомашинных комплексов.
- •Мультипроцессорные вычислительные системы.
- •Классификация мультипроцессорных вс:
- •Мкод. Конвейерные векторные вс.
- •Выполнение операций сложения и вычитания с плавающей точкой над векторами.
- •Видеорежимы.
Регистры.
Регистр-устройство, предназначенное для хранения, приёма, выдачи машинных слов, а также рядов вспомогательных операций- например, сдвиг.
Регистр состоит из триггеров, число которых равно числу разрядов в машинном слове.
Приём и передача информации из регистра в регистр.
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |



0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
Запись информации в с одного регистра на другой регистр.
Возьмём регистры, построенные на D-триггерах. Необходимо информацию с регистра A переписать на регистр B.
1
Т S
1
Т S
0
Т S
D D D
C C C
1 1 0
R R
R
1
Т S
1
Т S
0
Т S
D D D
C C C
R R R
Триггер начинает работать после сигнала синхронизации. Для получения числа в обратном коде снимаем информацию с инверсного выхода.
Для RS триггера выход
соединяется с входом S, а
c R. Тогда
при наличии сигнала синхронизации число
с одного регистра будет записано на
другой.
Сдвиг информации в регистре.
S
1
Т S
0
Т S
1
Т
D D D
C C C
R R
R
Информация в ЭВМ
может храниться либо в прямом, либо в
параллельном коде.
При использовании параллельного кода для хранения одного разряда информации используется 1 триггер, и при передаче машинных слов нужно задать столько шин, сколько разрядов в слове, т.е. одновременно(параллельно) все разряды машинного слова с одного регистра переписываются на другой регистр.
При использовании последовательного кода существует только один триггер и одна шина передачи для одного разряда. Каждый такт по этой шине последовательно передаётся один за другим разряды.
Дешифратор.
Дешифратором называется устройство, которое имеет n входов и m выходов, где m=2n. Дешифратор позволяет код, подаваемый на вход, преобразовывать в сигнал на одном из выходов, номер которого соответствует этому коду.
n=3 m=8
x0
1 0 y0
y1
x1
0 y2
.
x2 1 .
.
.
y7
на входе(101) – на у5 выходе будет 1
Пример:
000 y0=
001 y1=
010 y2=
111 ym-1=
Комбинационная схема.
y0
y1
y2
.
.
ym-1