Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эвм.doc
Скачиваний:
50
Добавлен:
02.12.2018
Размер:
2.13 Mб
Скачать

Радиальный ввод/вывод

В отличие от магистрального ввода/вывода имеется отдельное адресное пространство. Это значит ВУ может иметь один и тот же адрес, что и ячейка памяти, использующая команды в/в.

Микропроцессоры.

Выделяют два основных направления:

- однокристальные

- секционированные

Секционированные микропроцессоры:

на одном кристалле выполнен полностью микропроцессор (мп) на ограниченное кол-во разрядов ( например 4) Секции соединяются между собой , следовательно происходит наращивание разрядности мп до требуемого числа разрядов. Программирование ведется на микропрограммном уровне.

Однокристальные микропроцессоры:

весь процессор выполнен на одном кристалле. Программирование ведется на уровне машинных команд. На 1-ой ступени развития целиком мп не удавалось выполнить на одном кристалле, тогда мп был разделен «горизонтальными плоскостями» на несколько кристаллов.

Микропроцессоры серии INTEL.

м/п

Год выпуска

Частота МГц

Кол-во транзисторов тыс.шт

Разряд шины

Размер адресного пространства

Примечания

Intel 8086

1978

5-10

29

Внутр внешн

16/16

1Мбайт

20 разрядов адресная шина

Intel 8088

1980

5-8

29

16/8

1Мбайт

Используем в PC-XT

80286

1982

10-16

134

16/16

16Мбайт

Шина адреса 24 разряда, исп в PC-AT

80386DX

1985

20-33

275

32/32

4Гбайт

Шина адреса 32 разряда

80386SX

1988

20-30

275

32/16

4Гбайт

80486DX

1989

25-50

1200

32/32

4Гбайт

80486DX2

DX4

До 133

80486SX

1991

До 33

1200

32/32

4Гбайт

Pentium

1993

150-200

3.1 млн

32

4Гбайт

Pentium Pro

1995

150-200

5.5 млн +15.5млн или 31млн

32

64Гбайт

5.5 млн на осн кристалле 15.5млн(КЭШ 256Кб) 31млн(КЭШ 500Кб)

Pentium MMX

1996

166-266

4.5 млн.

32

64 Гбайт

Pentium 2

1997

233-466

7 млн.

32

64 Гбайт

Celeron

1988

266-300

Pentium III

1999

500-1000

8.2 млн

----//----

----//----

Pentium IV Prescott

2000

2-3 ГГц

от 3 ГГц

55 млн

100 млн

32

Pentium M

2003

1-2 ГГц

77-144 млн

32

Core Yonah

2004

1-2 ГГц

155 млн

32

Core 2 Solo

2006

1,6-3 ГГц

64

INTEL 8086,8088

Впервые идет совмещение обработки команд во времени.

Выделяются 2 устройства: операционное устройство (ОУ) и устройство шинного интерфейса (УШИ). УШИ предназначено для вычисления адресов и формирования запросов к памяти (ОП) к ВУ. В УШИ включён буфер команд емкостью 6 байт (очередь команд). Как только в буфере команд освободится 2 байта (внешняя шина данных и ширина выборки ОП 2 байта) УШИ формирует опережающий запрос в память за командами. ОУ выполняет команды, находящиеся в буфере команд. Если требуется обращение к памяти за операндами или по записи результата, то ОУ выставляет запрос к УШИ. Если УШИ свободно, то запрос выполняется сразу же, если УШИ занято выборкой команд, то после получения 2-х очередных байт обрабатывается запрос от ОУ. Т.о. выбор следующей команды начинается не по завершению предыдущей команды, а по наличию 2х свободных байт в буфере команд- принцип опережающей обработки. Снижение производительности происходит из-за появления команд перехода. При появлении команд перехода содержимое буфера обнуляется и буфер команд заполняется с команды, на которую осуществляется переход. Мультиплексированы шины данных и шины адреса.

МИКРОПРОЦЕССОР 8088

Внешняя шина данных 8 разрядов для совместимости с ранее разработанными ВУ. Для реализации плавающей точки в м/п 8086 и в 8088 для повышения производительности на материнской плате мог отдельно устанавливаться мп, аппаратно реализующий операции с плавающей точкой.

Тип операции

8087 Мкс

8086 и 8088 эмуляция мкс

+

17-18

1600

*

27

2100

36

19000

Exp x

130

17100

INTEL 80286

1.В отличие от 8086/8088 шина адреса и шина данных не мультиплексированы во времени ( своя ША и ШД)

2. Разработчики предусмотрели реальный и защищенный режим. В защищённом режиме имеется возможность использования мультипрограммирования.

3. Конвейерная обработка команд

Конвейерная обработка на уровне команд:

Каждый этап машинной команды обрабатывается на отдельном блоке. На 1-м такте 1-я команда подается на первый блок, то есть реализует 1-й этап(выборка команды из памяти). Во 2-м такте 1-я команда переходит на 2-й этап , а 2-я команда поступает на первый этап. В 3-ем такте, 1-я команда на 3 этапе, 2-я команда на 2-ом этапе, 3-я команда на 1-ом этапе. Т.е. конвейер команд аналогичен технологическому конвейеру. После заполнения конвейера каждый такт на конвейере заканчивает обрабатываться очередная команда. Поэтому говорят, что за первый такт выполняется 1 команда. Потеря производительности происходит в следствие команд перехода, когда содержимое конвейера обнуляется и в следствии информационных конфликтов

R1 + R2 R1

R3 + R1 R3

До тех пор пока результат для 1-й команды не будет записан в R1 вторая команда не может считывать операнды из R1 т.е. происходит блокирование конвейера. Для м/п INTEL 80286 число ступеней конвейера равно 4.

INTEL 80386 DX

Первый 32-х разрядный м/п. Уже в PC впервые поддерживается Windows. Работает как в реальном , так и в защищенном режиме. Поддерживается виртуальный режим м/п 8086 ( если параллельно запущенно несколько задач. то каждая задача обрабат. на м/п 8086

INTEL 80386 SX

Уменьшены внешние шины данных с 32 до 16 разрядов, было вызвано совместимостью с ВУ, которые работали с м/п 80286

INTEL 80486 DX

  1. Впервые сопроцессор с плавающей точкой был встроен в кристалл м/п. В предыдущих моделях сопроцессор с плавающей точкой реализован на отдельном кристалле. Сопроцессор стал работать на тактовой частоте основного процессора и произошло увеличение производительности в 2 раза.

  2. Внутрь самого кристалла был встроен КЭШ 1-го уровня, его емкость 8 Кбайт. КЭШ 2-го уровня располагалась отдельно на материнской плате и его объем 256Кбайт и 512Кбайт. Впервые КЭШ на материнской плате стал использоваться совместно с 80386 микропроцессором.

  3. Был усовершенствован механизм обработки команд, используется 5-ти ступенчатый конвейер, в среднем обеспечивается обработка 1-й команды за 1 такт.

DX2 – удвоение тактовой частоты

DX4 – утроение тактовой частоты

PENTIUM

  1. Впервые появился отдельно КЭШ команд и КЭШ данных, каждый по 8Кбайт.

  2. Впервые появляется суперскалярная обработка команд. В структуре имеется 2 АЛУ, которые параллельно обрабатывают независимые команды.

  3. Впервые аппаратно реализован блок предсказания переходов.

  4. Операции с плавающей точкой обрабатываются в конвейерном режиме.

PENTIUM PRO

1. В кристалле встроен КЭШ 1-го уровня на 16 Кбайт и КЭШ 2-го уровня либо на 256Кбайт либо на 512Кбайт. КЭШ 2-го уровня работает на тактовой частоте самого м/п, т.к встроена в кристалл.

2. В следующей модели фирма Intel отказалась от встроенного КЭШ 2-го уровня в кристалле, т.к. увеличился процент брака.

3. В Pentium Pro используют 14-ступенчатый конвейер.

4. В Pentium Pro (c него начинается серия Р6) используется конвейер с изменяемой последовательностью команд. Зависимая команда, поступающая на вход конвейера , не сдерживает выполнение следующей за ней независимой команды в окне просмотра. В предыдущих моделях зависимая команда блокировала выполнение всех следующих за ней команд.

PENTIUM MMX

Структура соответствует Pentium, однако увеличен КЭШ 1-го уровня до 32Кбайт (16 КЭШ команд +16 КЭШ данных)

Добавлено 57 новых команд для обработки видео изображения.

PENTIUM 2

Это есть Pentium Pro + Pentium MMX. Однако КЭШ 2-го уровня вынесен из кристалла и помещен на подложку в одном корпусе с основным кристаллом, работал на 0.5 тактовой частоте.

CELERON

Из подложки удален КЭШ 2-го уровня. Резко падает производительность системы. Начиная с модели 300А и выше, встраивается КЭШ внутрь кристалла на 128 Кбайт, который работает на частоте ЦП.

PENTIUM III

Структура Pentium 2 , добавлены команды для обработки видео изображения.

PENTIUM 4

В последующих моделях Pentium III КЭШ встраивается в кристалл на 256 Кбайт. Все Pentium 4 : КЭШ в кристалле.

  1. КЭШ 1-го уровня включает в младших моделях 8Кбайт данных, 12 Кбайт КЭШ, которая хранит микрокоманды. КЭШ 2-го уровня встроен в кристалл

  2. Число ступеней конвейера 20.(гиперконвейерная обработка) В КЭШ 1-го уровня поступают декодированные команды( хранится в КЭШ 1-го уровня микропрограмма), и за 1 такт декодирует одновременно 3 команды. В КЭШ хранится несколько цепочек микрокоманд. Если направление перехода выбрано не верно, происходит обращение в КЭШ 1-го уровня и выбирается другая цепочка микрокоманд.

  3. Память расширена до 16 Кбайт( в последних моделях)

  4. Существует 2 параллельно работающих АЛУ. С 2002г. Pentium 4 оснащается специально BIOS, который поддерживает гипертрейдинг: т.к. число блоков конвейера велико, то одновременно часть блоков может простаивать. Потому эти свободные блоки загружаются другой задачей.

PRESCOTT

31 ступень конвейера (гиперконвейрная обработка). КЭШ в кристалле увеличена до 1 Мб. КЭШ 3-го уровня 2Мб помещен на материнскую плату. Появляется новая обработка – гипертрейдинг. Чтобы заполнить 20-30 ступеней в КЭШ 1-го уровня находятся трассы микропрограмм. Гипертрейдинг – это псевдомультипрограммный режим, т.е на свободные блоки конвейера запускают вторую задачу, т.е одновременно обрабатываются 2 задачи.

PENTIUM D

На одной подложке (кристалле) помещены 2 ядра Prescott (каждый со своим КЭШ), отключив гипертрейдинг.

PENTIUM M

КЭШ 1-го уровня увеличена до 64 Кб. (архитектура P6 (продолжение Pentium III) 32Кб команд, 32Кб данных. КЭШ 2-го уровня 1-2Мб встроен в кристалл. Количество обрабатываемых блоков 9 штук)

CORE 2

КЭШ 1-го уровня увеличен до 2-4 Мб. КЭШ команд 32 Мб, КЭШ данных 32 Кб. Добавляется четвертый простой декодер. Число обрабатываемых блоков 11 штук : АЛУ с фиксированной точкой 3 штуки по 64 разряда, 2 шт. АЛУ с плавающей точкой 128р. Команды видеорежима 3 блока 128р. 3 блока обращения к памяти. Intel впервые в Core и Core 2 для двуядерных процессоров использовал общую КЭШ 2-го уровня. В Core 2 имеется связь между отдельными ядрами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]