
- •Основные принципы построения эвм.
- •I. Связь ядра и внешних устройств:
- •II. Способ построения ядра:
- •Системы счисления, используемые в эвм.
- •Представление чисел в позиционной системе счисления.
- •Перевод чисел из двоичной(восьмеричной, шестнадцатеричной) системы счисления в десятичную систему счисления.
- •Перевод чисел из десятичной системы счисления в двоичную(восьмеричную, шестнадцатеричную) систему счисления.
- •Перевод чисел из шестнадцатеричной системы счисления в двоичную.
- •Перевод чисел из двоичной системы счисления в шестнадцатеричную.
- •Прямой, обратный, дополнительный коды.
- •Дополнительный код.
- •Переполнение разрядной сетки.
- •Формы представления чисел в эвм.
- •Форма представления чисел с фиксированной точкой.
- •Форма представления чисел с плавающей точкой.
- •Логические функции.
- •Регистры.
- •Приём и передача информации из регистра в регистр.
- •Запись информации в с одного регистра на другой регистр.
- •Сдвиг информации в регистре.
- •Дешифратор.
- •Сумматор.
- •Счётчики.
- •Принципы организации памяти эвм.
- •Иерархическая структура памяти.
- •Основные этапы выполнения машинной команды.
- •Машинные команды (команды эвм).
- •Микропрограмма выполнения четырёхадресной команды. Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •1 Этап. Выбор машинной команды.
- •Способы адресации.
- •П коп Аi рямая адресация.
- •Непосредственная адресация.
- •Косвенная адресация.
- •Регистровая адресация.
- •Микропрограмма выполнения двухадресной команды формата регистр-регистр (r-r). Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •1 Этап. Выбор машинной команды.
- •Базовая адресация.
- •Индексная адресация.
- •Базово-индексная адресация.
- •Микропрограмма выполнения двухадресной команды. Структура операционной части цп.
- •1 Этап. Выбор машинной команды.
- •Косвенно-регистровая адресация.
- •Классификация микропрограммных устройств управления
- •Выполнение перехода на микропрограммном уровне.
- •Микропрограмма операции вычитания
- •Алу для выполнения операции умножения над числами с фиксированной точкой, представленных в прямом коде
- •Структурная схема алу для выполнения операции умножения над числами с фиксированной точкой, представленных в прямом коде (по 2 методу)
- •1 Этап.
- •2 Этап.
- •Деление чисел с фиксированной точкой. Деление с восстановлением остатка и без.
- •1 Этап.
- •2 Этап.
- •3 Этап.
- •Деление с восстановлением остатка.
- •Деление без восстановления остатка.
- •Структурная схема алу . (Для 2-ого случая).
- •Особенности выполнения операций над числами с плавающей точкой.
- •Организация системы прерывания
- •Общие правила организации прерывания.
- •Механизм реализации прерываний с помощью «старых» и «новых» ячеек
- •Стековый механизм организации
- •Внешние прерывания
- •Классификация систем прерывания
- •Организация в/в
- •Функционирование селекторного канала
- •Выполнение операции «запись»
- •Выполнение операции «чтение»
- •Организация мультиплексного канала
- •Сеанс начальной выборки
- •Сеанс связи по запросу ву
- •Выполнение операции «запись»
- •Выполнение операции «чтение»
- •Магистральный ввод/вывод
- •Радиальный ввод/вывод
- •Микропроцессоры.
- •Системные интерфейсы
- •Классификация вычислительных систем.
- •1.Многомашинные комплексы.
- •Классификация многомашинных комплексов.
- •Мультипроцессорные вычислительные системы.
- •Классификация мультипроцессорных вс:
- •Мкод. Конвейерные векторные вс.
- •Выполнение операций сложения и вычитания с плавающей точкой над векторами.
- •Видеорежимы.
Выполнение операции «чтение»
По СБ с РВУ на РДК считывается очередной байт информации. По формуле (1) корректируются параметры канала.
Если СБ и Дл массива не равны нулю, то переходим к третьему этапу.
Если СБ = 0, а Дл массива ≠ 0, то это означает, что СБ заполнен полностью и по адресу с РКК производиться запись в память с РДК. Далее третий этап.
Если Дл массива =0, то РДК записывается в память и анализируется поле признаков (см. выполнение операции «запись»).
В мультиплексном канале существует 3 различных регистра для хранения адреса.
-
РА – хранит адрес памяти подканала.
-
РАКК – хранит адрес следующего управляющего слова.
-
Адр в РКК – хранит адрес массива, который считывается или записывается в ОП.
Магистральный ввод/вывод
Через общую шину могут обслуживаться одновременно только 2 устройства. Поэтому, в отличие от предыдущего случая, параллельное совмещение по времени выполнения программы в ЦП и ввод/вывод невозможно.
В каждый момент времени одно устройство является ведущим, а остальные являются ведомыми, за исключением ОП, которая всегда ведомая.
В общей шине выделяют 4 группы шин:
-
Шины данных
-
Шины управления
-
Адресные шины
-
Шины арбитража
Шины данных:
По шинам данных в параллельном коде данные пересылаются между ведущим и ведомым устройствами.
Шины управления предназначены для передачи управляющих сигналов.
Адресные шины:
При данном способе ввода/вывода существует единое адресное пространство для всех устройств. Следовательно, здесь не нужны специальные команды в/в, а достаточно команды move (команда пересылки), а адреса определяют между какими устройствами осуществляется передача. В этом заключается отличие от радиального в/в.
Шины арбитража(шина запроса на прерывание):
См. стековый механизм прерывания.
ВУ, готовое к приему или передаче 1-2 байт информации, выставляет сигнал прерывания на шину запроса. Запрос обрабатывается и в качестве программы обработки прерывания будет выступать программа в/в, под управлением которой 1-2 байта информации будут передаваться между двумя устройствами. Такой программно управляемый в/в характерен для медленных устройств. Для быстродействующих систем используют прямой доступ к памяти. Быстродействующие устройства подключаются к специальной шине запроса на прерывание, которая имеет наивысший приоритет. При поступлении запроса на шину прямого доступа к памяти общая шина освобождается для в/в. Однако программа, обрабатываемая в ЦП, с обработки не снимается, т.е. стековый механизм реализации прерывания в этом случае не работает.
Программно-управляемый ввод/вывод(для медленных ВУ)
ЦП
ЗПn
:
ЗП1
:
РПn
ВУ
ВУ
ВУ как только готово принять или передать байт информации на шину запроса на прерывание, выставляет запрос на прерывание.
В стэк записываются основные параметры прерванной программы(вектор состояния). По адресу вектора прерывания, который выдаёт ВУ, выбираются основные параметры прерывания во вводу/выводу(адрес 1-ой выполняемой команды, порог прерывания) и помещаются на регистры ЦП. В ЦП начинает выполняться программа прерывания по вводу/выводу. Под управлением этой программы происходит ввод/вывод 1-2 байта информации (обмен между ВУ и ОП или ЦП). После этого программа обработки прерываний завершает свою работу. Из стэка восстанавливаются основные параметры прерванной программы(вектор состояний), и она продолжает выполняться далее. Когда ВУ вновь будет готово принять или передать 1-2 байта информации , то оно вновь выставляет запрос на прерывание и т.д.
Параллельно ввод/вывод и обработка программы в ЦП выполняться не могут.
Прямой доступ к памяти(для быстродействующих ВУ)
Программа в ЦП не прерывается(стэковый механизм прерывания не задействуется). Непосредственно ввод/вывод осуществляется под управлением контроллера по вводу/выводу. При этом ВУ подаёт запрос на специальную шину: запрос прямого доступа к памяти. Эта линия всегда имеет самый высокий приоритет. В контроллере есть регистр адреса начала массива , регистр длины массива. Как только длина массива = 0 передача заканчивается.