- •Введение
- •Раздел 1. Теоретическая механика
- •1.1. Статика твердого тела
- •1.1.1. Основные понятия и аксиомы статики
- •1.1.2. Система сходящихся сил
- •1.1.3. Момент силы относительно точки и оси. Пара сил
- •1.1.4. Система произвольно расположенных сил
- •1.1.5. Центр параллельных сил и центр силы тяжести
- •1.2. Кинематика
- •1.2.1. Кинематика точки
- •1.2.2. Простейшие виды движения твердого тела
- •1.2.3. Плоскопараллельное движение твердого тела
- •1.2.4. Сложное движение точки
- •1.3. Динамика
- •1.3.1. Законы механики
- •1.3.2 Диффеpенциальные уpавнения движения матеpиальной точки
- •1.3.3 Свободные прямолинейные колебания материальной точки
- •1.3.4. Принцип Даламбера для материальной точки
- •1.3.5. Динамика относительного движения материальной точки
- •1.3.6. Механическая система. Классификация сил. Моменты инерции
- •1.3.7. Общие теории динамики
- •Раздел 2. Сопротивление материалов
- •2.1. Основные понятия, допущения и гипотезы
- •2.2. Классификация сил
- •2.3. Метод сечений. Виды деформаций. Напряжения
- •2.4. Растяжение и сжатие. Эпюры продольных сил и нормальных напряжений
- •2.5. Механические испытания материалов
- •2.6. Напряжения в наклонных сечениях. Главные напряжения
- •2.7. Статически определимые и статически неопределимые системы
- •2.8. Сдвиг и кручение
- •2.9. Изгиб
- •2.10. Сложные деформации
- •Раздел 3. Теория механизмов и машин
- •3.1. Основные понятия и определения
- •Классификация кинематических пар
- •3.2. Основные виды механизмов
- •3.3. Структурный синтез и анализ механизмов
- •3.4. Кинематический анализ и синтез механизмов
- •Звенья механизма
- •3.5. Динамический анализ и синтез механизмов
- •3.6. Трение в механизмах
- •Раздел 4. Детали машин
- •4.1. Классификация механизмов, узлов и деталей
- •4.2. Основы проектирования механизмов и машин
- •4.3. Требования к деталям, критерии работоспособности и влияющие на них факторы
- •Заключение
- •Библиографический список Основной
- •Дополнительный
- •Содержание
- •Раздел 1. Теоретическая механика 5
- •Раздел 2. Сопротивление материалов 79
- •Раздел 3. Теория механизмов и машин 119
- •Раздел 4. Детали машин 133
4.3. Требования к деталям, критерии работоспособности и влияющие на них факторы
Несмотря на большое многообразие современных машин, отличающихся друг от друга назначением, производительностью, скоростью движения рабочих органов и т.д., установлены общие требования, предъявляемые к конструкции самих машин, а также их узлов и деталей.
Машина должна отличаться целесообразностью, легкостью и компактностью конструкции, экономичностью ее изготовления и эксплуатации, прочностью и долговечностью в работе, надежностью и безопасностью действия, привлекательным внешним видом и удобством пользования.
К конструкциям узлов предъявляются требования легкой их сборки и разборки, легкой замены быстроизнашивающихся частей и т.д.
Критериями работоспособности деталей является их прочность, износостойкость, жесткость, теплостойкость, виброустойчивость. Под надежностью деталей и сборочных единиц понимают их свойство сохранять работоспособность в течение заданного срока эксплуатации.
В зависимости от назначения детали ее расчет ведут по одному или нескольким критериям. Например, валы расчитывают на прочность, жесткость, виброустойчивость, а для резьбовых и сварных соединений главным критерием является их прочность.
Прочность – важнейший критерий работоспособности детали, характеризует ее способность сопротивляться действию нагрузок без разрушения или пластических деформаций. Непрочные детали не могут работать.
Различают поломки деталей при статическом нагружении и при повторно-переменном нагружении, когда рабочие напряжения достигают соответственно предела прочности σв (предела текучести σт) и пределов выносливости σ-1,τ-1.
Жесткость характеризуется изменением размеров и формы детали под нагрузкой. Упругие перемещения деталей не должны превышать допустимых перемещений, устанавливаемых на основании опытов и расчетов. Например, при больших прогибах валов в редукторе резко ухудшается работа зубчатых колес и подшипников.
Нормы жесткости деталей устанавливают на основе практики эксплуатации и расчетов. При этом чаще встречаются случаи, когда размеры, полученные из расчета на прочность, оказываются недостаточными по жесткости.
Для увеличения жесткости деталей при конструировании механизма рекомендуется: 1) заменять, где это возможно, деформацию изгиба растяжением и сжатием; 2) уменьшать плечи изгибающих и скручивающих сил и линейные размеры деталей, испытывающих напряжения изгиба и кручения; 3) для деталей, работающих на изгиб, применять такие формы сечений, которые имеют наибольшие моменты инерции J и сопротивления W; 4) для деталей, работающих на кручение, применять замкнутые (кольцевые) сечения, имеющие наибольшие моменты инерции Jρ и сопротивления Wρ при кручении; 5) уменьшать длину деталей, работающих на сжатие (продольный изгиб) и 6) выбирать для деталей материалы с высоким значением модуля упругости (Е или G).
Износостойкость. В результате изнашивания выходят из строя большинство подвижно соединенных деталей. При этом происходит увеличение зазоров в соединении, что приводит к потере точности работы механизма, возрастанию динамических нагрузок и даже поломке деталей.
Изнашивание увеличивает стоимость эксплуатации, вызывая необходимость проведения дорогих ремонтных работ. Для многих типов машин за период их эсплуатации затраты на ремонты и техническое обслуживание в связи с изнашиванием в несколько раз превышают стоимость новой машины. Этим объясняется большое внимание, которое уделяют в настоящее время трибонике – науке о трении, смазке и изнашивании механизмов.
Повышение износостойкости деталей может быть достигнуто: соответствующим выбором материала; повышением твердости и чистоты трущихся поверхностей; обеспечением условий для жидкостного трения, при котором поверхности деталей разделены тонким масляным слоем. Они непосредственно не соприкасаются, а следовательно, и не изнашиваются, коэффициент трения становится очень малым (0,005); соблюдением рационального режима смазки и предохранения поверхностей от загрязнения.
Виброустойчивость. При высоких скоростях звеньев механизмов могут возникнуть вибрации, которые вызывают дополнительные переменные напряжения и, как правило, приводят к усталостному разрушению деталей. При вибрациях особенно опасно явление резонанса, которое наступает в случае, когда частота собственных колебаний детали совпадает с частотой изменения периодических сил, вызывающих вибрации, так как при этом резко возрастает амплитуда колебаний и может произойти разрушение детали.
Причинами появления вибрации являются: неуравновешенность движущихся деталей механизма, большие зазоры между сопряженными деталями, неточность изготовления зубьев колес, недостаточная жесткость деталей и корпусов механизмов, периодическое изменение сил и другие причины.
Для предотвращения вибраций необходимо устранить причины, способствующие их возникновению. Часто вибрации можно устранить путем изменения динамических свойств системы, изменения моментов инерции подвижных частей механизма и увеличения жесткости вибрирующих деталей, уравновешивания вращающихся деталей. Для защиты механизма от внешних механических воздействий – толчков, ударов и вибрации применяются амортизаторы.
Теплостойкость. Тепловые расчеты при проектировании механизмов обычно производятся для решения двух задач: 1) определения температуры нагрева деталей и изыскания способов ограничения ее величины допустимыми пределами; 2) определения величины тепловых деформаций деталей для учета их влияния на точность и надежность механизма.
Пренебрежение к учету влияния тепловых факторов может привести к чрезмерному и неравномерному нагреву деталей механизма и нарушению нормального их взаимодействия.
