- •Введение
- •Раздел 1. Теоретическая механика
- •1.1. Статика твердого тела
- •1.1.1. Основные понятия и аксиомы статики
- •1.1.2. Система сходящихся сил
- •1.1.3. Момент силы относительно точки и оси. Пара сил
- •1.1.4. Система произвольно расположенных сил
- •1.1.5. Центр параллельных сил и центр силы тяжести
- •1.2. Кинематика
- •1.2.1. Кинематика точки
- •1.2.2. Простейшие виды движения твердого тела
- •1.2.3. Плоскопараллельное движение твердого тела
- •1.2.4. Сложное движение точки
- •1.3. Динамика
- •1.3.1. Законы механики
- •1.3.2 Диффеpенциальные уpавнения движения матеpиальной точки
- •1.3.3 Свободные прямолинейные колебания материальной точки
- •1.3.4. Принцип Даламбера для материальной точки
- •1.3.5. Динамика относительного движения материальной точки
- •1.3.6. Механическая система. Классификация сил. Моменты инерции
- •1.3.7. Общие теории динамики
- •Раздел 2. Сопротивление материалов
- •2.1. Основные понятия, допущения и гипотезы
- •2.2. Классификация сил
- •2.3. Метод сечений. Виды деформаций. Напряжения
- •2.4. Растяжение и сжатие. Эпюры продольных сил и нормальных напряжений
- •2.5. Механические испытания материалов
- •2.6. Напряжения в наклонных сечениях. Главные напряжения
- •2.7. Статически определимые и статически неопределимые системы
- •2.8. Сдвиг и кручение
- •2.9. Изгиб
- •2.10. Сложные деформации
- •Раздел 3. Теория механизмов и машин
- •3.1. Основные понятия и определения
- •Классификация кинематических пар
- •3.2. Основные виды механизмов
- •3.3. Структурный синтез и анализ механизмов
- •3.4. Кинематический анализ и синтез механизмов
- •Звенья механизма
- •3.5. Динамический анализ и синтез механизмов
- •3.6. Трение в механизмах
- •Раздел 4. Детали машин
- •4.1. Классификация механизмов, узлов и деталей
- •4.2. Основы проектирования механизмов и машин
- •4.3. Требования к деталям, критерии работоспособности и влияющие на них факторы
- •Заключение
- •Библиографический список Основной
- •Дополнительный
- •Содержание
- •Раздел 1. Теоретическая механика 5
- •Раздел 2. Сопротивление материалов 79
- •Раздел 3. Теория механизмов и машин 119
- •Раздел 4. Детали машин 133
Раздел 2. Сопротивление материалов
2.1. Основные понятия, допущения и гипотезы
В статике мы изучали абсолютно твердые тела, которые под действием внешних сил не изменяют размеров и формы. В действительности таких тел нет, все реальные элементы конструкций и машин при действии на них внешних сил изменяют свою форму и размеры - деформируются и при некоторой величине сил могут разрушиться.
Способность деформироваться - одно из основных свойств всех твердых тел. Она является следствием их молекулярного строения. Как известно, твердые тела состоят из молекул, расположенных беспорядочно (аморфное строение) или в определенном порядке (кристаллическое строение). Молекулы не за-полняют всего объема тела, а удерживаются на некотором расстоянии одна от другой под влиянием межмолекулярных сил взаимодействия. Приложение внешних сил нарушает нормальные расстояния между молекулами, и тело деформируется. При этом изменяется нормальное межмолекулярное взаимодействие и внутри тела возникают силы, которые противодействуют деформации и стремятся вернуть частицы тела в прежнее положение. Эти внутренние силы называют силами упругости, а свойство тел устранять деформацию после прекращения действия внешних сил называется упругостью.
Если тело не восстанавливает первоначальной формы и размеров, деформации называют остаточными или пластичными. Наличие остаточных деформаций в деталях машин в подавляющем большинстве недопустимо. Внутренние силы могут увеличиваться лишь до определенного предела, характеризуемого прочностью материала. Если внутренние силы не в состоянии уравновесить внешние нагрузки, тело разрушается.
Для расчета реальной конструкции, установления математических соотношений между действующими силами, геометрическими размерами деталей конструкции, деформациями и силами упругости необходимо отбросить несущественные с точки зрения расчета факторы, т.е. идеализировать конструкцию - создать расчетную схему, сохраняющую основные свойства реальной конструкции, но лишенную ее второстепенных свойств.
Основные допущения и принципы, принятые при расчете конструкций:
1. Все тела предполагаются абсолютно упругими.
2. Все тела по своему строению предполагаются сплошными, не имеющими во внутренней структуре трещин или полостей.
3. Материал рассматривается как однородная, изотропная, сплошная среда, обладающая свойством упругости.
Изотропный материал обладает одинаковыми физико-механическими свойствами во всех направлениях (не изотропный материал - дерево, оно по разному сопротивляется нагружению вдоль и поперек волокон).
4. Перемещения точек тела под действием нагрузок очень малы по сравнению с размерами тела, поэтому уравнения равновесия составляются как для недеформируемого тела.
5. Перемещения точек упругого тела прямо пропорциональны действующим нагрузкам.
6. Внешние силы действуют независимо друг от друга. Результат действия на тело нескольких сил равен сумме результатов действия каждой силы, при этом порядок приложения сил безразличен. Это положение известно под названием принципа независимости действия сил.
2.2. Классификация сил
Внешние силы это активно приложенные нагрузки - силы и моменты. Например, усилие пилота на рычаге, вращающий момент, действующий на вал со стороны привода, сила тяги самолета - типичные приложенные нагрузки. Приложенная нагрузка может создаваться в результате активного воздействия на тело окружающей среды (температурная нагрузка на лопатки турбины со стороны потока раскаленных газов, аэродинамическая нагрузка на крыло от встречного воздушного потока и др.). К внешним нагрузкам относят также реакции. Эти нагрузки прикладываются к нагруженным элементам со стороны сопрягающихся с ними опор, например, сила противодействия пилоту со стороны рычага, нагрузка на вал со стороны подшипников, силы и моменты со стороны фюзеляжа на крыло или на стойку шасси и т.д.
Внешние нагрузки, прикладываемые к авиаконструкциям в процессе эксплуатации техники могут достигать сотен тонн, действовать кратковременно или длительно.
По характеру действия силовые факторы подразделяются на статичес-кие и динамические нагрузки.
Статические нагрузки - силы и моменты постоянные или медленно изменяющиеся по величине (детали и узлы самолета на стоянке или при установившемся горизонтальном полете. Пилот медленно и плавно нажимая на рычаг управления, прикладывает к нему статическую нагрузку).
Динамические нагрузки - силы и моменты, которые прикладываются внезапно, сразу полной своей величиной - ударные, быстро нарастают либо убывают - инерционные, изменяются по направлению - циклические. Например, на шасси самолета в момент приземления действует со стороны грунта динамическая нагрузка ударного характера; изменение скорости полета сопровождается возникновением инерционных нагрузок на детали и узлы самолета и двигателя; под циклической нагрузкой можно рассматривать комплекс усилий вызывающий вибрацию крыла.
По способу приложения силовые факторы подразделяются на сосредоточенные и распределенные.
Сосредоточенными силами называются силы, передающиеся на элемент конструкции через площадку, размеры которой очень малы по сравнению с размерами всего элемента. Например, силы действующие на узлы крепления дви-гателя к самолету, на узлы крепления элеронов, рулей и т.д.
Распределенными силами называют силы, приложенные к элементам конструкции на протяжении некоторой длины или площади, могут быть равномерно распределенными или неравномерно распределенными. Так аэродинамическая нагрузка по поверхности крыла представляет собой нагрузку, неравномерно распределенную по площади.
Вес горизонтально расположенной балки представляет собой нагрузку, равномерно распределенную по длине (погонную нагрузку).
Для полки лонжерона крыла, сечение которой уменьшается от корневой части к консоли, нагрузка от собственного веса является неравномерно распределенной по длине.
