
- •Раздел I. Нейрофизиологическая основа психических процессов
- •Системный принцип деятельности мозга
- •Проверь себя
- •Структурная организация мозга
- •Методы психофизиологических исследований
- •Проверь себя
- •Психофизиология функциональных состояний
- •Проверь себя
- •Психофизиология потребностно-эмоциональной сферы
- •Психофизиология восприятия
- •Проверь себя
- •Психофизиология внимания
- •Основные свойства внимания
- •Психофизиология памяти
- •Проверь себя
- •Психофизиология речи и мышления
- •Раздел п. Возрастная психофизиология
- •Закономерности онтогенетического развития. Возрастная периодизация
- •Проверь себя
- •Созревание мозга
- •Проверь себя
- •Психофизиологическая характеристика младенческого и раннего возраста
- •Проверь себя.
- •Психофизиология дошкольного возраста
- •Психофизиология младшего школьного возраста
- •Психофизиологические особенности подросткового возраста.
Методы психофизиологических исследований
В психофизиологии используются методики, позволяющие с разных сторон изучить физиологические основы психической деятельности.
Регистрация нейронной активности
Изучение активности отдельных нейронов, являющихся элементарной структурно-функциональной единицей мозга, позволяет вскрыть основные закономерности его функционирования. Регистрация активности отдельных нейронов и их объединений, осуществляемая в экспериментах на животных, позволила выявить как общие свойства нейронов нервной системы, так и их специфические для структур разного уровня функциональные характеристики. Регистрация нейронной активности в ответ на действие различных стимулов и при выполнении животным поведенческих актов легла в основу понимания механизмов интегративной деятельности мозга.
При внеклеточной регистрации (микроэлектрод приближен к нейрону) по характеру генерируемой нейроном импульсной активности (рис. 5А) - числу, частоте спайков в разряде, межспайковых и меж разрядных интервалов и по изменению
Рис.5. Импульсная активность нейронов при внеклеточной (А) и внутриклеточной (Б) регистрации. Стрелка - момент нанесения стимула. На Б видна генерация спайков на вершинах возбудительных постсинаптических потенциалов.
этих параметров при различных внешних воздействиях и поведенческих актах можно характеризовать функциональную роль нейронов различных структур мозга в приеме и анализе внешних сигналов и осуществлении ответных действий. Внутриклеточная регистрация (рис. 5Б), при которой микроэлектрод введен в нейрон, дает важнейшую дополнительную информацию о соотношении возбудительных и тормозных процессов, проявляясь в динамике локальных медленных возбудительных и тормозных постсинаптических потенциалов (ВПСП и ТПСП), и о механизмах модуляции нейронной активности.
Одновременная регистрация нескольких нейронов, принадлежащих одному ансамблю, позволяет выявить свойства этого объединения, не сводимые к реакциям отдельных клеток, и охарактеризовать его как первичную интегративную систему.
Использование регистрации нейрональной активности мозга человека в условиях клиники при различных воздействиях и психологических тестах дает возможность получить важные дополнительные сведения о месте различных областей коры и глубинных структур в целостной деятельности мозга и о механизмах компенсации и коррекции при лечении.
Изучение функций отдельных структур мозга
Одним из первых методов оценки роли разных структур в организации поведения явился метод повреждения или удаления участков мозга животного с помощью хирургических, химических и температурных воздействий. Другой рано возникший метод - это метод прямой электрической стимуляции, который, помимо его использования в экспериментах на животных, применялся во время нейрохирургических операций, когда находящийся в сознании больной мог оценить изменения психики при раздражении различных точек коры и подкорковых структур. Например, при раздражении проекционной зрительной коры у больного были ощущения цветовых пятен, вспышек пламени; стимуляция вторичных зрительных полей вызывала сложные зрительные образы, а определенных подкорковых ядер - звуковые и зрительные галлюцинации. С помощью электрической стимуляции во время операции была уточнена локализация речевых зон, физиологические основы речи, памяти и эмоций.
На основе вычленения роли отдельных структур мозга в психической деятельности А.Р. Лурией было создано самостоятельное направление исследований нейропсихология. Была разработана специальная система тестов, позволяющих характеризовать специфические изменения поведения и психики при повреждении или дефицитарности определенных структур мозга.
Электроэнцефалография
Метод регистрации электроэнцефалограммы (ЭЭГ) суммарной электрической активности, отводимой с поверхности головы, рассматривается как наиболее распространенный и адекватный для изучения нейрофизиологических основ психической деятельности. Многоканальная запись ЭЭГ позволяет одномоментно регистрировать электрическую активность многих функционально различных областей коры (рис.6). ЭЭГ отводится с помощью специальных электродов (чаще серебряных), которые фиксируются на поверхности черепа шлемом или крепятся клеящей пастой. Наиболее часто используется расположение электродов по системе 10-20 %, где их координаты рассчитаны по основным костным ориентирам. Поскольку ЭЭГ отражает разность потенциалов между двумя точками, для выяснения активности отдельных корковых областей используют индифферентный электрод, помещаемый чаще всего на мочке уха. Это так называемое монополярное отведение. Наряду с этим анализируется разность потенциалов между двумя активными точками (биполярное отведение). Независимо от способа регистрации в ЭЭГ выделяются следующие типы ритмических колебаний:
-
дельта-ритм 0,5-3 Гц;
-
тета-ритм 4-7 Гц;
-
альфа-ритм 8-13 (14) Гц; это основной ритм ЭЭГ, преимущественно выраженный в каудальных отделах коры (затылочной и теменной);
-
бета-ритм 15-30 Гц;
-
гамма-колебания - > 30 Гц.
Эти ритмы различаются не только по своим частотным, но и функциональным характеристикам. Их амплитуда, топография, соотношение являются важным диагностическим признаком и критерием функционального состояния различных областей коры при реализации психической деятельности.
Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. Визуальная оценка применяется в клинической практике. С целью унификации и объективизации диагностических оценок используется метод структурного анализа ЭЭГ, основанный на выделении функционально сходных признаков и их объединении в блоки, отражающие характер активности структур мозга различного уровня (коры больших полушарий, диэнцефальных, лимбических, стволовых). В возрастной нейрофизиологии этот метод успешно используется для оценки степени структурно-функциональной зрелости мозга.
Рис,6. Электрическая активность, зарегистрированная от различных областей коры мозга человека (указаны латинские обозначения областей коры).
В настоящее время как в клинических, так и в исследовательских целях широко используются компьютерные методы анализа ЭЭГ, позволяющие оценить выраженность разных ритмов по их спектральной мощности и их статистическую взаимосвязь (корреляционный анализ и анализ функции когерентности ритмической активности). Последний метод широко используется в исследовательских целях. Он оценивает степень сходства организации ритмов ЭЭГ в различных мозговых структурах. Сходство организации биоритмов рассматривается как необходимая предпосылка взаимодействия и адекватный показатель функционального объединения структур мозга при осуществлении различных видов деятельности. Рост значений функции когерентности (Ког) биопотенциалов в парах областей коры отражает увеличение вероятности их функциональной интеграции.
Вызванные потенциалы
Другой тип суммарной электрической активности, возникающий в ответ на внешние воздействия, - вызванные потенциалы (ВП) - отражает изменения функциональной активности областей коры, осуществляющих прием и обработку поступающей информации. Вызванный потенциал представляет собой последовательность разных по полярности - позитивных и негативных компонентов, возникающих после предъявления стимула (рис. 7). Количественными характеристиками ВП являются латентный период (время от начала стимула до максимума каждого компонента) и амплитуда компонентов. Метод регистрации ВП широко используется при анализе процесса восприятия
Рис.7. Зрительный вызванный потенциал. Начало ответа совпадает с моментом предъявления светового стимула.
В экспериментальных моделях на животных при одновременной регистрации ВП и активности отдельных нейронов была показана связь основного комплекса ВП с возбудительными и тормозными процессами, протекающими на разных уровнях коры больших полушарий. Было обнаружено, что начальные компоненты ВП связаны с активностью пирамидных клеток, воспринимающих сенсорную информацию, - это так называемые экзогенные компоненты. Возникновение других более поздних фаз ответа отражает обработку информации, осуществляемую нейронным аппаратом коры при участии не только сенсорного афферентного потока, но и импульсации, поступающей из других отделов мозга, в частности, из ассоциативных и неспецифических ядер таламуса, и по внутрикорковым связям из других корковых зон.
Эти нейрофизиологические исследования положили начало широкому использованию ВП человека для анализа когнитивных процессов (см. гл. 6).
У человека ВП имеет относительно небольшую амплитуду по сравнению с фоновой ЭЭГ, и его изучение стало возможно только при использовании компьютерной техники выделения сигнала из шума и последующего накопления реакций, возникающих в ответ на ряд однотипных стимулов. ВП, регистрируемые при предъявлении сложных сенсорных сигналов и решении определенных когнитивных задач, получили название, связанное с событиями потенциалов - ССП.
При изучении ССП наряду с параметрами, используемыми при анализе ВП, - латентный период и амплитуда компонентов, применяются и другие специальные методы обработки, позволяющие в сложной конструкции ВП дифференцировать компоненты, разные по функциональной значимости: метод главных компонент и метод разностных кривых. Метод главных компонент основан на факторном анализе и выделении факторов, наиболее тесно связанных с определенными операциями акта восприятия и приходящихся на временной интервал, соответствующий тому или иному компоненту ССП. Это позволяет определить функциональную роль данного компонента в анализируемом процессе. С той же целью используется метод разностных кривых, получаемых путем компьютерного вычитания из ССП, регистрируемых при предъявлении конкретных задач, ССП, возникающих в ответ на нейтральную к данной задаче стимуляцию. На основе преимущественной выраженности определенных компонентов делается заключение об их связи с выполняемой задачей.
Топографическое картирование
Многоканальная регистрация ЭЭГ дает возможность представить полученные в результате компьютерной обработки ЭЭГ данные в удобном для восприятия наглядном виде, как одномоментное пространственное распределение по коре мощности разных ритмов, амплитуд компонентов ВП или других характеристик (см. форзац). Построение последовательности таких карт дает представление о динамике процессов. На топографических картах, построенных на контуре черепа, цветом и его интенсивностью кодируются различные параметры ЭЭГ. Такое картирование (brain mapping) позволяет охарактеризовать функциональную организацию мозга при разных состояниях и видах деятельности.
Компьютерная топография
Компьютерная топография основана на использовании новейших технических методов и вычислительной техники, позволяющих получить множество изображений одной и той же структуры и ее объемное изображение.
Из методов компьютерной топографии наиболее часто используется метод позитронной эмиссионной топографии (ПЭТ). Этот метод позволяет охарактеризовать активность различных структур мозга на основе изменения метаболических процессов. При обменных процессах нервные клетки используют определенные химические элементы, которые можно пометить радиоизотопами. Усиление активности сопровождается усилением обменных процессов, и в областях повышенной активности образуется скопление изотопов, по которым и судят об участии тех или иных структур в психических процессах (см. форзац).
Другим широко используемым методом является ядерно-магнитная резонансная топография. Метод основан на получении изображения, отражающего распределение плотности ядер водорода (протонов), при помощи электромагнитов, расположенных вокруг головы человека.
Водород является одним из химических элементов, участвующих в метаболических процессах, и потому его распределение в структурах мозга является надежным показателем их активности. Преимущество этого метода состоит в том, что его использование, в отличие от ПЭТ, не требует введения в организм радиоизотопов и вместе с тем, так же как ПЭТ, позволяет получить четкие изображения «срезов» мозга в различных плоскостях.
Метод регистрации вегетативных показателей
Наряду с методиками, позволяющими непосредственно изучать активность мозговых структур в процессе психической деятельности и поведенческих реакций, в психофизиологических исследованиях используются методы непрямой регистрации неспецифических изменений функционального состояния ЦНС. К их числу относятся показатели вегетативных реакций таких, как электрокожный потенциал и параметры функционирования сердечно-сосудистой системы.
Кожно-гальваническая реакция (КГР). Электрическая активность кожи связана главным образом с активностью потовых желез, изменяющих ее сопротивление и находящихся под контролем вегетативной нервной системы. Изменение активности неспецифической системы мозга, морфологическим субстратом которой является ретикулярная формация, вызывает существенные изменения электрокожного потенциала. КГР чрезвычайно чувствительны к эмоциональному реагированию, состоянию тревоги, напряженности и часто используется для характеристики функционального состояния человека.
Показатели функционирования сердечно-сосудистой системы. Любые изменения функциональной активности структур мозга требуют адекватного метаболического обеспечения и, прежде всего, усиленного снабжения кислородом, что достигается интенсификацией кровоснабжения. Это определяет использование различных показателей деятельности сердечно-сосудистой системы.
Признаками, отражающими напряженную работу сердца и усиление выброса крови, являются изменение минутного объема крови (количество крови, проталкиваемой через сердце за 1 мин) и частота сердечных сокращений (ЧСС). ЧСС, которая может быть зафиксирована как простым наблюдением за пульсом, так и при регистрации электрокардиограммы, наиболее часто используется как показатель изменения функционального состояния ЦНС. Широко используется введенный P.M. Баевским расчетный показатель - индекс напряжения (ИН), учитывающий как ЧСС, так и ее стабильность. ИН прямо пропорционален ЧСС и обратно пропорционален вариации интервалов между двумя сокращениями сердца. Его увеличение свидетельствует о напряжении функционирования сердечно-сосудистой системы.
Изменения в периферических сосудах изучаются с помощью плетизмографии. Плетизмография основана на регистрации изменений объема крови, поступающей к различным органам. Наиболее распространена пальцевая плетизмография. В плетизмографии различают два типа изменений: тонические, отражающие общие изменения объема крови, и физические, обусловленные изменением пульсового объема от одного сокращения сердца к другому. Оба показателя - чувствительные индикаторы вегетативных сдвигов при психической деятельности. Для изучения локального мозгового кровотока наряду с описанной выше компьютерной топографией, используются клиренсные методы, основанные на измерении скорости вымывания из ткани мозга введенных в организм изотопов ксенона либо криптона (изотопный клиренс) или атомов водорода (водородный клиренс). Скорость вымывания вводимых химических веществ прямо связана с интенсивностью кровотока. Увеличение локального мозгового кровотока отражает рост уровня метаболический активности в определенных участках мозга.