
- •Взаимосвязь уравнений прямой на плоскости.
- •1. Точка
- •2. Прямая на плоскости
- •2. Уравнения плоскости
- •Неполные уравнения плоскости
- •3. Уравнения прямой в пространстве.
- •4. Двумерные преобразования в декартовых координатах.
- •5. Двумерные преобразования в однородных координатах.
- •6. Трехмерные преобразования.
- •7. Трехмерные системы координат.
- •8. Параллельные проекции.
- •9. Алгоритмы рисования линий.
- •10. Рисование фракталов.
- •Классификация фракталов
- •1. Геометрические фракталы
- •2. Алгебраические фракталы
- •3. Стохастические фракталы
- •Системы итерируемых функций
8. Параллельные проекции.
Параллельное проецирование можно рассматривать как частный случай центрального проецирования, когда центр проецирования удален в бесконечность, а проецирующие лучи параллельные. Положение проецирующих прямых относительно плоскости проекций определяется вектором направления проецирования. Получаемое при этом изображение называют параллельной проекцией объекта.
При параллельном проецировании сохраняются свойства центрального и добавляются следующие:
-
проекции параллельных прямых параллельны между собой;
-
отношение отрезков прямой равно отношению их проекций;
-
отношение отрезков двух параллельных прямых равно отношению их проекций.
В свою очередь параллельные проекции подразделяются на прямоугольные, когда проецирующие лучи перпендикулярны плоскости проекций, и косоугольные, когда направление проецирования образует с плоскостью проекций угол не равный 900.
Частным случаем параллельного проецирования является ортогональное проецирование. Проекция объекта, полученная с использованием этого метода, называется ортогональной. Ортогональному проецированию присущи все свойства параллельного и центрального проецирования и, кроме того, справедлива теорема о проецировании прямого угла: если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в прямой угол.
К проекционным изображениям в начертательной геометрии предъявляются следующие основные требования:
1. Обратимость – восстановление оригинала по его проекционным изображениям (чертежу) – возможность определять форму и размеры объекта, его положение и связь с окружающей средой.
2. Наглядность – чертеж должен создавать пространственное представление о форме предмета.
3. Точность – графические операции, выполненные на чертеже, должны давать достаточно точные результаты.
4. Простота – изображение должно быть простым по построению и допускать однозначное описание объекта в виде последовательности графических операций.
К счастью, эти требования распространяются не на все задачи компьютерной графики.
В машинной графике используют центральные (перспективные) и параллельные проекции.
В зависимости от взаимного положения плоскости проекции и координатных осей проекции делят на следующие виды.
Одноточечную центральную проекцию мы уже рассмотрели достаточно подробно. Далее эти наработки мы используем в качестве базы для изучения других видов проекций.
Начнем пояснения с наиболее простых видов проекции.
Ортографическая проекция – в общем случае, изображение какого-нибудь предмета на плоскости, посредством проецирования отдельных его точек при помощи перпендикуляров к этой плоскости. В этой проекции предметы представляются такими, какими они представлялись бы наблюдателю, смотрящему на них с бесконечного расстояния. Каждый план есть проекция местности на горизонтальную плоскость, проведенную через середину участка. В ортографической проекции иногда изображают и целые полушария земли.
В компьютерной графике при ортографической проекции плоскость проекции совпадает с одной из координатных плоскостей или параллельна ей. Например, матрица проецирования вдоль оси X на плоскость Y0Z имеет вид:
.
Если плоскость проецирования параллельная плоскости Y0Z, то матрицу проецирования нужно умножить на матрицу переноса.
Тогда матрица проецирования вдоль оси X будет иметь вид:
.
Матрица проецирования вдоль оси Y имеет вид
.
Матрица проецирования вдоль оси Z имеет вид
.
Ортографическая проекция часто кажется немного странной, потому что объекты остаются того же самого размера, независимо от расстояния: это подобно просмотру сцены от отдаленной в бесконечность точки. Однако, ортонормированный просмотр очень полезен, потому что обеспечивает более «техническое» проникновение в сцену, делая ее проще для определения пропорций.
Обычно ортогональную проекцию применяют для детального рассмотрения объекта с шести разных сторон. Можно, например, рассмотреть дом снизу, сверху, спереди, сзади, слева и справа - при этом направление проецирования совпадает с одной из осей координат. Пока нет отсечения невидимых граней имеет смысл рассматривать только проекции параллельно трех осей координат.