Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Раздел 6.doc
Скачиваний:
22
Добавлен:
24.11.2018
Размер:
275.46 Кб
Скачать

Эксплуатация систем «человек-машина» Системы «человек-машина»

В системах на основе ЭВМ значительное место занимают специфические вопросы согласования работы человека – «оператора» – и технологической части системы – «машины». Как самостоятельная проблема «человек-машина» возникла в явном виде совсем недавно. Обусловлено ее возникновение целым рядом факторов научно-технического прогресса:

  • человека-оператора нельзя исключить ни из одной системы, сколь бы автоматизированной она ни была, остается хотя бы один человек;

  • системный подход к изучению трудовой деятельности привел к выделению пограничной среды контакта «человек-машина» или системы «человек-машина» (СЧМ) в качестве самостоятельного поля научной деятельности, к появлению науки эргономики, объектом которой стала система «человек-машина-среда»;

  • бурное развитие ЭВМ и информатизация общества ставят совершенно новые задачи перед разработчиками систем, базирующихся на ЭВМ;

  • одной из коренных проблем человекомашинных, или эргатических, систем является повышение их надежности;

  • значительное расширение круга операторских профессий, в которых ту или иную роль играют комплексы на основе ЭВМ;

  • общее углубление представлений о взаимодействии человека и машины в процессе трудовой деятельности;

  • неопределенность информации, лежащей на стыке наук (или сфер);

  • машины могут предъявлять к человеку «нечеловеческие» требования. В результате стали раздаваться голоса, что «человеческий фактор» становится тормозом процесса. Однако автоматы, как оказалось, могут не все, а человек кое в чем превосходит машины: он хорошо учитывает случайный характер явлений, может предсказать их развитие и др.;

  • вопросам создания вычислительной техники (вообще – машин) уделяется много внимания проектировщиками, вопросами же организации контакта «человек-машина» занимаются гораздо меньше;

  • возрастание цены ошибки оператора при очевидной невозможности все автоматизировать как по требованиям обеспечения надежности, так и из-за необходимости обеспечить разумную стоимость.

Эти и другие аналогичные соображения привели (более 30 лет назад) к появлению цикла научных дисциплин, предметом которых являются те или иные аспекты взаимодействия человека и машины как в общей постановке, так и применительно к приложениям в конкретных областях. К числу этих дисциплин относятся инженерная психология, теория эргатических систем, эргономика, техническая эстетика, системы отображения информации и др.

В вопросах, касающихся контакта «человек-ЭВМ» можно выделить следующие проблемы:

  • эргономическое проектирование систем, т.е. проектирование систем на основе ЭВМ с учетом «человеческого фактора»;

  • инженерно-психологические исследования работы на ЭВМ как специфической трудовой деятельности;

  • определение рационального разделения функций между человеком-оператором и программно-технической средой СЧМ.

Эргономическое проектирование. По существу этой проблемы необходимо согласовать с «человеческим фактором» все вопросы ввода-вывода (темп, формы представления и т. д.) и отображения информации; клавиатуры и другие органы управления; средства коммуникации; конструктивное исполнение устройств. В этих системах важную роль играют вопросы технической эстетики, целесообразного формирования предметно-пространственной среды (формы и контуры устройств, компоновка основных блоков, специальная мебель для оснащения рабочего места оператора, формирование окружающего его пространства). Специфические системы должны создаваться для операторов, работающих в экстремальных условиях. Широко разрабатываются в СЧМ специальные системы отображения информации – индикаторные и информационные панели, экраны, проекторы, пульты и т.д. с использованием различных технических средств.

Для пользователей универсальных ЭВМ круг этих вопросов сужается, естественно, до вопросов формирования пользовательского интерфейса, экранных форм и т.д. Однако и эти вопросы являются важными, если оператору в этой среде приходится работать длительное время и принимать важные решения. В задачах использования таких мощных средств, какими являются ЭВМ, необходимо тщательно учитывать все нюансы, в том числе и то, что в системе «человек-ЭВМ» функционирует человек как элемент.

Инженерно-психологический аспект. В инженерной психологии речь идет прежде всего об исследовании свойств человека-оператора в той или иной среде трудовой деятельности. В этот аспект входит или тесно к нему примыкает исследование даже физиологических процессов, обусловленных именно контактом человека с машиной в СЧМ (утомляемость, производительность и т.д.), для чего широко исследуется зрительный анализатор в самых различных аспектах: биомеханическом, нейрофизиологическом, кибернетическом и т.д.

Заметно расширились биомеханические и физиологические исследования нервно-мышечного аппарата в различных условиях как интеллектуальной, так и физической операторской деятельности. В этом круге вопросов решаются проблемы совершенствования размещения органов управления и систем отображения информации, оцениваются затраты нервно-мышечной энергии, напряженность рабочих поз и утомляемость оператора, сопоставляются различные компоновки оборудования рабочего места и т.д.

Исследование человека-оператора как элемента СЧМ, в конце концов, позволяет определить его различные характеристики: статические, динамические, информационные, логические, энергетические и т.д. На основе полученных при этом данных в ряде случаев составляется математическая модель оператора. Варианты моделей могут быть самыми разными. Так, иногда оператор отображается передаточной функцией, т.е. эквивалентной линейной динамической системой, отражающей его специфические свойства: способности к прогнозированию, инерционность, запаздывание в обработке информации. Эта модель используется при работе оператора в динамических системах управления процессами. В ряде ситуаций оператор описывается логической моделью, тем или иным автоматом, алгоритмом и т.п. Такие подходы приняты при описании оператора, участвующего в процессах ОИ и принятия решения.

Математическая модель оператора включается в модель СЧМ при исследовании системы в целом с учетом «человеческого» фактора. Такие «модельные» исследования позволяют значительно сократить натурную отработку систем, включающих оператора, и найти основные проектные решения по параметрам ЭВМ и оператора, т.е. предъявить требования к его состоянию здоровья, физиологическим параметрам, квалификации, характеру образования и подготовке.

Разделение функций в системе «человек-машина». Проблема разделения функций в системе «человек-ЭВМ» между оператором («человеком») и ЭВМ («машиной») должна специально изучаться и конкретно разрешаться. При расширении в СЧМ круга функций ее программно-аппаратного комплекса потребуются изучение и моделирование всех процессов, происходящих в системе. Алгоритмизация и программирование моделей потребуют дополнительных затрат на проектирование системы. Для реализации потребуется более мощная ЭВМ. Таким образом, произойдет удорожание СЧМ в целом, что нежелательно.

При расширении круга функций оператора возрастают требования к его квалификации, обученности, состоянию в процессе деятельности. В ряде случаев могут происходить сбои (срывы) в деятельности оператора по той или иной причине, в частности в экстремальных ситуациях: увеличение темпов представления информации оператору или ее объема выше допустимого предела приведет, в конце концов, к ошибочным реакциям (действиям, решениям), т.е. к ошибкам оператора. В результате в СЧМ может иметь место авария или даже катастрофа.

Таким образом, задача разделения функций между оператором и ЭВМ, как правило, – задача оптимизационная, решение которой отыскивается как компромисс. В качестве критерия оптимальности может рассматриваться, в частности, надежность выполнения системой ее функций в форме наиболее подходящей к случаю характеристики. Как у оператора, так и у ПАК с расширением круга функций снижается надежность.

При рассмотрении в целом СЧМ как системы с обратными связями необходимо учитывать, что совместно человек-оператор и ЭВМ реализуют в системе некоторый заданный набор функций, которые в процессе работы или при проектировании могут перераспределяться. При расчете надежности будет справедлива последовательная схема, в которой с ростом числа функций и снижением надежности одного элемента уменьшается число функций другого элемента и повышается его надежность, поэтому можно представить некоторое оптимальное по надежности распределение функций.

Аналогичные задачи приходится решать, например, при обслуживании ИС, пусконаладочных работах, тестировании или регламентных работах: можно тестировать ЭВМ как автоматически, так и «вручную», т.е. с пульта. Однако это давно не практикуется. Создаются специальные тестирующие программы. Их включают в состав АРМа, и осуществляют тестирование на заданную глубину. Более того, все больше функций контроля состояния ЭВМ автоматически реализуется аппаратно, т.е. с использованием специальных встроенных избыточных элементов, реализующих автоматический контроль.

Определение уровня избыточности в технических средствах, разделение функций между программной и аппаратной средой и, наконец, разделение функций между оператором и ПАК – эти вопросы решаются при проектировании и при организации эксплуатации системы.