- •Оглавление
- •Предисловие
- •Введение
- •Методические рекомендации
- •Глава 1. Структура естествознания
- •1.1. Предмет естествознания
- •1.1.1. Анализ понятия «природа»
- •1.1.2. Естествознание донаучное, преднаучное и научное
- •1.1.3. Неисчерпаемость предмета естествознания
- •1.1.4. Специфика донаучного и преднаучного естествознания
- •1.1.5. Специфика научного естествознания
- •1.2. Генезис научного естествознания
- •1.2.1. Перспективы античной преднауки
- •1.2.2. Замещение реальных объектов идеальными
- •1.2.3. Операции преобразования и моделирование изменений
- •1.3. Структура естественнонаучного познания
- •1.3.1. Принципы научного познания
- •1.3.2. Общие методы познания
- •1.3.3. Основные формы естествознания6
- •1.3.4. Непостижимая эффективность математики8
- •Глава 2. Этапы развития естествознания
- •2.1. Ступени развития знания
- •2.1.1. «Естественная магия»
- •2.1.2. Магия и религия
- •2.1.3. Религия и естествознание
- •2.1.4. Специфика восточной преднауки
- •2.1.5. Письменность
- •2.2. Естественнонаучные аспекты античной натурфилософии
- •2.2.1. Евклидова геометрия - первая стандартная научная теория
- •2.2.2. Древнегреческий атомизм
- •2.2.3. Механика Архимеда16
- •2.2.4. Становление астрономии
- •2.3. Значение арабской системы знаний в истории естествознания21
- •2.3.1. Физические достижения арабского средневековья22
- •2.3.2. Астрономия арабо-мусульманского средневековья
- •2.4. Научные революции
- •2.4.1. Первая научная революция (XVII век). Г. Галилей
- •2.4.2. Вторая научная революция (кон. XVIII в.- нач. XIX века). И. Ньютон
- •2.4.3. Третья научная революция (кон. XIX в.- сер. XX века)
- •2.4.4. Четвёртая научная революция (кон. XX века)
- •2.5. Организация современного естествознания
- •2.5.1. Иерархия естественнонаучных законов
- •2.5.2. Этические принципы науки27
- •2.5.3. Роль междисциплинарных исследований в естествознании
- •Глава 3. Фундаментальные Концепции естествознания
- •3.1. Термодинамика
- •3.1.1. Роль тепловых явлений в природе
- •3.1.2. Вещественная теория теплоты.
- •3.1.3. Корпускулярная теория теплоты
- •3.1.4. Законы термодинамики
- •3.2. Молекулярно-кинетическая теория (статистическая механика)
- •3.2.1. Основные положения молекулярно-кинетических представлений
- •3.2.2. Дискретность вещества
- •Химия. Периодическая таблица химических элементов д. И. Менделеева32
- •3.2.4. Закон сохранения энергии
- •3.3. Электромагнитная теория
- •3.3.1. История открытия электричества
- •3.3.2. М. Фарадей: исследования электромагнетизма
- •Заряд и поле. Закон сохранения электрического заряда
- •Проводники, полупроводники и диэлектрики. Электрический ток
- •Электромагнитное взаимодействие. Электромагнитная теория поля
- •3.4. Квантовая теория
- •3.4.1. Хронология становления квантовой теории
- •3.4.2. Гипотеза м. Планка. Кванты
- •3.4.3. Фотоэлектрический эффект и дискретная природа света
- •3.4.4. Квантовая теория атома н. Бора
- •3.4.5. Вероятностный характер процессов в микромире
- •3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- •3.4.7. Принцип неопределённости в. Гейзенберга
- •3.4.8. Волновая механика и уравнение э. Шредингера
- •3.4.9. Принцип дополнительности н. Бора
- •3.5. Симметрия
- •3.5.1. Симметрия и законы сохранения
- •3.5.2. Принципы, организующие сходство
- •3.5.3. Роль симметрии в организации мира
- •Глава 4. Концепции движения, пространства и времени
- •4.1. Генезис представлений о пространстве и времени
- •4.1.1.Биологические предпосылки времени и виды пространства.
- •4.1.2. Пространство и время мифа и натурфилософии
- •4.1.3. Теоцентрическая модель пространства и времени
- •4.2. Классические концепции пространства и времени
- •4.2.1. Проблема континуальности и дискретности пространства и времени
- •4.2.2. Классические интерпретации пространства и времени
- •4.2.3. Проблемы реального пространства
- •4.3. Предпосылки неклассических интерпретаций пространства и времени
- •4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- •Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- •4.3.3. Принцип относительности и электродинамика Максвелла
- •4.4. Специальная теория относительности (сто)
- •4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- •4.4.3. Пространство и время в инерциальных системах
- •4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- •4.5. Общая теория относительности (ото)
- •4.5.1. Инерция и гравитация
- •4.5.2. Теория гравитации
- •4.5.3. Гравитационные массы и искривление пространства - времени
- •Глава 5. Хаос. Самоорганизация. Сложность
- •5.1. Хаос и порядок
- •5.1.1. Энтропия41
- •5.1.2. Принципы системности и целостности
- •5.1.3. Нелинейные системы. Рождение порядка
- •5.2. Самоорганизация
- •5.2.1. Синергетика
- •5.2.2 Механизм самоорганизации
- •5.2.3. Самоорганизация в диссипативных структурах
- •5.3. Необходимость и случайность
- •5.3.1. Проявление необходимости и случайности
- •5.3.2. Необходимость хаоса
- •5.3.3. Смысл информации
- •5.4. Сложность44
- •5.4.1. Понимание сложности. Неравновесное состояние систем
- •5.4.2. Сложное поведение и фазовое пространство45
- •5.4.3. Сложность поведения живых и социальных систем
- •5.4.4. Сложность адаптивных стратегий в живом мире
- •5.5. Управление
- •5.5.1. Кибернетика и теория управления
- •5.5.2. Информационная структура управления
- •5.5.3. Эффект обратной связи
- •Глава 6. Жизнь
- •6.1. Проблема возникновения жизни
- •6.1.1. Специфика жизни как особого уровня организации материи
- •6.1.2. Гипотеза творения (креационизм)
- •6.1.3. Гипотеза спонтанного зарождения жизни
- •6.1.4. Гипотеза стационарного состояния
- •6.1.5. Гипотеза панспермии
- •6.1.6. Теория биохимической эволюции
- •6.2. Структура живого вещества
- •6.2.1. Признаки живого вещества
- •6.2.2. Виды регуляции организма
- •6.2.3. Постоянство внутренней среды (гомеостаз)
- •6.3. Теории эволюции
- •6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- •6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- •6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- •6.3.4. Вид и видообразование
- •6.3.5. Проблемы видообразования
- •6.4. Теория наследственности
- •6.4.1. Закон доминирования г. Менделя
- •6.4.2. Хромосомная теория наследственности
- •6.4.3. Структура гена. Расшифровка генетического кода
- •6.4.4. Днк, её роль в реализации наследственной информации
- •6.4.5. Клеточная теория (т. Шван, м Шлейден)
- •1.4.6. Биогенетический закон
- •6.5. Философское и естественнонаучное постижение смерти
- •6.5.1. Биологический и социальный смысл смерти
- •6.5.2. Что такое бессмертие?
- •6.5.3. Социальные следствия развития генной инженерии
- •6.5.4. Социальные и этические проблемы клонирования
- •Глава 7. Биосфера
- •7.1. Генезис биосферы
- •7.1.1. Геологические условия возникновения биосферы
- •7.1.2. Эволюция биосферы. Живое вещество
- •7.1.3. Роль абиотических и биотических круговоротов
- •7.2. Биогеохимические процессы в биосфере
- •7.2.1. Состав вещества биосферы
- •7.2.2. Особенности основных биосферных циклов
- •Биосферный цикл углерода
- •Биосферный цикл азота
- •Биосферный цикл фосфора
- •7.2.3. Биохимические функции живого вещества
- •7.2.4. Биогенная миграция атомов и биогеохимические принципы
- •7.3. Экологическая структура биосферы
- •Биосфера - многокомпонентная иерархическая система
- •Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- •7.3.3. Растения. Грибы. Животные
- •7.4. Глобальное биологическое разнообразие и подходы к его изучению
- •7.4.1. Современные представления о видовом разнообразии биосферы74
- •7.4.2. Современные подходы к исследованию биоразнообразия75
- •Популяционный подход
- •Экосистемный подход
- •7.5. Ноосферогенез
- •7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- •7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- •7.5.3. Антропоцентризм и биосферное мышление
- •Глава 8. Человек
- •8.1. Человек как вид
- •8.1.1. Человек: особый вид животных
- •8.1.2. Культурный и биологический аспекты эволюции человека
- •8.1.3. Нарушение основного биологического закона
- •8.2. Сознание и поведение
- •8.2.1. Функции головного мозга. Успехи нейрофизиологии
- •8.2.2. Поведение
- •8.2.3. Бихевиоризм
- •8.2.4. Гештальтпсихология
- •8.2.5. Этология и социобиология
- •8.3. Современное мировоззрение и планетарные проблемы
- •8.3.1. Проблема формирования современного мировоззрения
- •8.3.2. Глобальные последствия развития цивилизации
- •8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- •8.3.4. Новые ценности85
- •8.4. Концепция устойчивого развития
- •8.4.1. Экологическая и экономическая компоненты деятельности
- •8.4.2. Общие положения концепции устойчивого развития
- •8.4.3. Условия устойчивого развития и ключевые понятия концепции
- •8.5. Искусственный интеллект (ии)
- •8.5.1. Основные направления развития ии
- •8.5.2. Знания и их представление
- •8.5.3. Проблема понимания естественного языка
- •Глава 9. Иерархия мироздания
- •9.1. Макромир
- •9.1.1. Основные этапы развития представлений о Вселенной
- •9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- •9.1.3. Концепция расширяющейся Вселенной
- •9.1.4. Концепция «Большого Взрыва»
- •9.1.5. Антропный принцип90
- •9.2. Мезомир
- •9.2.1. Эволюция планеты Земля
- •9.2.2. Экологическая структура мезомира
- •9.2.3. Информационные свойства мезомира
- •9.3. Микромир
- •9.3.1. Учение об элементарных частицах
- •9.3.2. Элементарная структура вещества. Атом
- •9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- •9.3.4. Фундаментальные взаимодействия и законы природы92
- •9.3.5. Фундамент материи: физический вакуум и его состояния93
- •9.4. Виртуальные реальности
- •9.4.1.Значение термина «виртуальная реальность»
- •9.4.2. Компьютерная виртуальная реальность
- •9.4.3. Способы существования виртуальной реальности
- •9.4.4. О философии виртуальной реальности и киберпространства
- •9.5. Поиск внеземных цивилизаций
- •9.5.1. О возможности существования жизни и разума во Вселенной
- •9.5.2. О возможности информационного контакта с внеземными цивилизациями
- •9.5.3. О возможных формах технологической активности разума во Вселенной
- •Летопись естественнонаучных открытий Период становления физики как науки
- •Первый этап развития естествознания (кон. XVII в. – 60 годы XIX в.)
- •Второй этап развития естествознания
- •Период современной физики
- •Важнейшие открытия в биологии и медицине в хх веке
- •Хронология клонирования
- •Летопись открытий в химии
- •Зарождение научной химии
- •Утверждение в химии атомно-молекулярного учения
- •Великие открытия в химии в хх веке
- •Астрономия в хх веке
- •Литература по главам Глава 1. Структура естествознания
- •Глава 2. Этапы развития естествознания
- •Глава 3. Фундаментальные концепции естествознания
- •Глава 4. Концепции движения, пространства и времени
- •Глава 5. Хаос. Самоорганизация. Сложность
- •Глава 6. Жизнь
- •Глава 7. Биосфера
- •Глава 8. Человек
- •Глава 9. Иерархия мироздания
- •Литература дополнительная
- •Словарь терминов
- •Примечания
2.4. Научные революции
Первая научная революция: становление классического естествознания, создание общей системы механики, введение Ньютоном понятия «системы», замена статичной картины мира его динамическим представлением. Вторая научная революция: дисциплинарная организация классического естествознания, распространение идей эволюционизма. Третья научная революция: становление неклассического естествознания, радикальное изменение научной парадигмы. Четвёртая научная революция: мир как система исторически эволюционирующих, нелинейных, самоорганизующихся систем.
Термин «научная революция» - классическое понятие для обозначения периода, охватывающего XVI и XVII века, со времени публикации «Об обращении небесных сфер» Коперника (1543) до выхода в свет «Математических начал натуральной философии» Ньютона (1687). Астрономия Коперника и физическое экспериментирование, с одной стороны, и аналитическая геометрия, дифференциальное и интегральное исчисление - с другой, привели к замене «библии» - мнений Аристотеля и донаучного анимизма - механистическим пониманием законов природы26. Но эпоха научных революций не ограничивается этим периодом. После XVII века происходит ещё несколько переворотов, существенно изменивших облик научного естествознания. Поэтому мы применим термин «научная революция» и к этим событиям.
2.4.1. Первая научная революция (XVII век). Г. Галилей
Основным достижением физических исследований XVII в., подводящим итог развитию опытного естествознания и окончательно сокрушившим аристотелевскую физическую парадигму, явилось завершение создания общей системы механики, которая была в состоянии дать объяснение движению небесных светил на основе явлений, наблюдаемых на Земле.
И в эпоху античности, и в XVII веке признавалась важность изучения движения небесных светил. Но если для древних греков данная проблема имела больше философское значение, то для XVII века, преобладающим был аспект практический. Развитие мореплавания обусловливало необходимость выработки более точных астрономических таблиц для целей навигации по сравнению с теми, которые требовались для астрологических целей. Основной задачей было определение долготы, столь нужной астрономам и мореплавателям. Для решения этой важной практической проблемы и создавались первые государственные обсерватории (в 1672 г. Парижская, в 1675 г. Гринвичская).
По сути своей это была задача определения абсолютного времени, дававшего при сравнении с местным временем интервал, который и можно было перевести в долготу. Определить это время можно было с помощью наблюдения движений Луны среди звезд, то есть часов, «закрепленных на небе», а также с помощью точных часов, поставленных по абсолютному времени и находящихся у наблюдателя. Для первого случая были необходимы очень точные таблицы для предсказания положения небесных светил, а для второго - абсолютно точные и надежные часовые механизмы
На рубеже XVII в. и в его первой половине развертывается деятельность Г. Галилея – одного из основателей современного естествознания Ему принадлежат доказательство вращения Земли, открытие принципа относительности движения и закона инерции, законов падения тел и их движения по наклонной плоскости, законов сложения движений и поведения математического маятника. Он же изобрел телескоп и с его помощью исследовал ландшафт Луны, обнаружил спутники Юпитера, пятна на Солнце и фазы Венеры.
В процессе развития галилеевской механики Ньютон вводит понятие «состояние системы». Первоначально оно было использовано для простейших механических систем. (В дальнейшем понятие состояния обнаружило свою фундаментальную роль и стало применяться в других физических концепциях в качестве одного из основных.) Состояние механической системы в классической механике полностью определяется импульсами и координатами всех тел, образующих данную систему. Если известны координаты и импульсы в данный момент времени, то можно однозначно установить значения координат и импульсов в любой последующий момент времени, а также вычислить значения других механических величин - энергии, момента количества движения и т. д.
Для утверждения своей концепции Ньютону было необходимо разрушить старую, аристотелевскую картину мира. Вместо сфер, которые управлялись перводвигателем, он ввел механизм, действующий на основе естественного закона, не требовавшего постоянного использования силы и допускавшего божественное вмешательство лишь для своего создания и приведения в движение. Это был компромисс науки и религии. С представлением, в соответствии с которым для поддержания движения нужна сила, было покончено. Место статистического представления мира заняло динамическое его представление. Уступки религии в вопросе о первотолчке были, однако, связаны не только с социальными причинами, обусловливающими компромисс науки и религии, но и с характером его понимания природы, которую он считал неэволюционирующей, инертной, косной субстанцией.
Поскольку вечные законы природы дают возможность объяснять только повторяемость неизменных, неэволюционирующих тел, то первый толчок был в такой картине мира просто необходим. Ньютон, как и Аристотель, понимали физику как общую теорию природы. Но если Ньютон теорию природы строил на математических и экспериментальных началах, то Аристотель исключал их из сферы познания. Экспериментально-математический метод познания открыл перед физикой и вообще перед естествознанием колоссальные перспективы. Ньютон, заложив основы теоретического фундамента классической физики, открыл путь к ее дальнейшему развитию.
Научная революция XVII века привела к становлению классического естествознания, основные методологические установки которого были выражены следующим образом:
-
Объективность и предметность научного знания объявлялась возможной только при исключении из описания и объяснения всего, что относилось к субъекту и процедурам познания. Это означало возможность проведения как абсолютно «чистого» эксперимента, так и получения абсолютного знания.
-
Как следствие предполагалось возможным определить вытекающие из опыта онтологические принципы и построение истинной картины природы.
-
Процедура объяснения сводилась к поиску механистических причин и субстанций - носителей сил.
-
Механистическая картина природы рассматривалась как тождественная физической картине реальности, которая, в свою очередь, рассматривалась как общенаучная картина мира.
-
Объекты рассматривались как простые механические системы, действующие в соответствии с детерминистическими принципами. Такой подход к изучаемому способствовал возникновению таких категорий как «вещь», «процесс», «часть», «целое», «причинность», «пространство», «время».