- •Оглавление
- •Предисловие
- •Введение
- •Методические рекомендации
- •Глава 1. Структура естествознания
- •1.1. Предмет естествознания
- •1.1.1. Анализ понятия «природа»
- •1.1.2. Естествознание донаучное, преднаучное и научное
- •1.1.3. Неисчерпаемость предмета естествознания
- •1.1.4. Специфика донаучного и преднаучного естествознания
- •1.1.5. Специфика научного естествознания
- •1.2. Генезис научного естествознания
- •1.2.1. Перспективы античной преднауки
- •1.2.2. Замещение реальных объектов идеальными
- •1.2.3. Операции преобразования и моделирование изменений
- •1.3. Структура естественнонаучного познания
- •1.3.1. Принципы научного познания
- •1.3.2. Общие методы познания
- •1.3.3. Основные формы естествознания6
- •1.3.4. Непостижимая эффективность математики8
- •Глава 2. Этапы развития естествознания
- •2.1. Ступени развития знания
- •2.1.1. «Естественная магия»
- •2.1.2. Магия и религия
- •2.1.3. Религия и естествознание
- •2.1.4. Специфика восточной преднауки
- •2.1.5. Письменность
- •2.2. Естественнонаучные аспекты античной натурфилософии
- •2.2.1. Евклидова геометрия - первая стандартная научная теория
- •2.2.2. Древнегреческий атомизм
- •2.2.3. Механика Архимеда16
- •2.2.4. Становление астрономии
- •2.3. Значение арабской системы знаний в истории естествознания21
- •2.3.1. Физические достижения арабского средневековья22
- •2.3.2. Астрономия арабо-мусульманского средневековья
- •2.4. Научные революции
- •2.4.1. Первая научная революция (XVII век). Г. Галилей
- •2.4.2. Вторая научная революция (кон. XVIII в.- нач. XIX века). И. Ньютон
- •2.4.3. Третья научная революция (кон. XIX в.- сер. XX века)
- •2.4.4. Четвёртая научная революция (кон. XX века)
- •2.5. Организация современного естествознания
- •2.5.1. Иерархия естественнонаучных законов
- •2.5.2. Этические принципы науки27
- •2.5.3. Роль междисциплинарных исследований в естествознании
- •Глава 3. Фундаментальные Концепции естествознания
- •3.1. Термодинамика
- •3.1.1. Роль тепловых явлений в природе
- •3.1.2. Вещественная теория теплоты.
- •3.1.3. Корпускулярная теория теплоты
- •3.1.4. Законы термодинамики
- •3.2. Молекулярно-кинетическая теория (статистическая механика)
- •3.2.1. Основные положения молекулярно-кинетических представлений
- •3.2.2. Дискретность вещества
- •Химия. Периодическая таблица химических элементов д. И. Менделеева32
- •3.2.4. Закон сохранения энергии
- •3.3. Электромагнитная теория
- •3.3.1. История открытия электричества
- •3.3.2. М. Фарадей: исследования электромагнетизма
- •Заряд и поле. Закон сохранения электрического заряда
- •Проводники, полупроводники и диэлектрики. Электрический ток
- •Электромагнитное взаимодействие. Электромагнитная теория поля
- •3.4. Квантовая теория
- •3.4.1. Хронология становления квантовой теории
- •3.4.2. Гипотеза м. Планка. Кванты
- •3.4.3. Фотоэлектрический эффект и дискретная природа света
- •3.4.4. Квантовая теория атома н. Бора
- •3.4.5. Вероятностный характер процессов в микромире
- •3.4.6. Гипотеза Луи де Бройля об универсальности корпускулярно-волнового дуализма
- •3.4.7. Принцип неопределённости в. Гейзенберга
- •3.4.8. Волновая механика и уравнение э. Шредингера
- •3.4.9. Принцип дополнительности н. Бора
- •3.5. Симметрия
- •3.5.1. Симметрия и законы сохранения
- •3.5.2. Принципы, организующие сходство
- •3.5.3. Роль симметрии в организации мира
- •Глава 4. Концепции движения, пространства и времени
- •4.1. Генезис представлений о пространстве и времени
- •4.1.1.Биологические предпосылки времени и виды пространства.
- •4.1.2. Пространство и время мифа и натурфилософии
- •4.1.3. Теоцентрическая модель пространства и времени
- •4.2. Классические концепции пространства и времени
- •4.2.1. Проблема континуальности и дискретности пространства и времени
- •4.2.2. Классические интерпретации пространства и времени
- •4.2.3. Проблемы реального пространства
- •4.3. Предпосылки неклассических интерпретаций пространства и времени
- •4.3.1. Принцип относительности и инерциальные системы (г. Галилей)
- •Эфир как абсолютная система отсчёта. Опыт Майкельсона - Морли
- •4.3.3. Принцип относительности и электродинамика Максвелла
- •4.4. Специальная теория относительности (сто)
- •4.4.1. А. Эйнштейн. Единство пространства и времени. Связь массы и энергии38
- •4.4.3. Пространство и время в инерциальных системах
- •4.4.4. Неоднозначность геометрии физического пространства. Неевклидовы геометрии
- •4.5. Общая теория относительности (ото)
- •4.5.1. Инерция и гравитация
- •4.5.2. Теория гравитации
- •4.5.3. Гравитационные массы и искривление пространства - времени
- •Глава 5. Хаос. Самоорганизация. Сложность
- •5.1. Хаос и порядок
- •5.1.1. Энтропия41
- •5.1.2. Принципы системности и целостности
- •5.1.3. Нелинейные системы. Рождение порядка
- •5.2. Самоорганизация
- •5.2.1. Синергетика
- •5.2.2 Механизм самоорганизации
- •5.2.3. Самоорганизация в диссипативных структурах
- •5.3. Необходимость и случайность
- •5.3.1. Проявление необходимости и случайности
- •5.3.2. Необходимость хаоса
- •5.3.3. Смысл информации
- •5.4. Сложность44
- •5.4.1. Понимание сложности. Неравновесное состояние систем
- •5.4.2. Сложное поведение и фазовое пространство45
- •5.4.3. Сложность поведения живых и социальных систем
- •5.4.4. Сложность адаптивных стратегий в живом мире
- •5.5. Управление
- •5.5.1. Кибернетика и теория управления
- •5.5.2. Информационная структура управления
- •5.5.3. Эффект обратной связи
- •Глава 6. Жизнь
- •6.1. Проблема возникновения жизни
- •6.1.1. Специфика жизни как особого уровня организации материи
- •6.1.2. Гипотеза творения (креационизм)
- •6.1.3. Гипотеза спонтанного зарождения жизни
- •6.1.4. Гипотеза стационарного состояния
- •6.1.5. Гипотеза панспермии
- •6.1.6. Теория биохимической эволюции
- •6.2. Структура живого вещества
- •6.2.1. Признаки живого вещества
- •6.2.2. Виды регуляции организма
- •6.2.3. Постоянство внутренней среды (гомеостаз)
- •6.3. Теории эволюции
- •6.3.1. Зарождение эволюционного учения (ж. Ламарк, ж. Кювье, ч. Лайель)
- •6.3.2. Эволюционная теория естественного отбора (ч. Дарвин, а. Уоллес)52
- •6.3.3. Номогенез как альтернатива дарвинизму и как его дополнение
- •6.3.4. Вид и видообразование
- •6.3.5. Проблемы видообразования
- •6.4. Теория наследственности
- •6.4.1. Закон доминирования г. Менделя
- •6.4.2. Хромосомная теория наследственности
- •6.4.3. Структура гена. Расшифровка генетического кода
- •6.4.4. Днк, её роль в реализации наследственной информации
- •6.4.5. Клеточная теория (т. Шван, м Шлейден)
- •1.4.6. Биогенетический закон
- •6.5. Философское и естественнонаучное постижение смерти
- •6.5.1. Биологический и социальный смысл смерти
- •6.5.2. Что такое бессмертие?
- •6.5.3. Социальные следствия развития генной инженерии
- •6.5.4. Социальные и этические проблемы клонирования
- •Глава 7. Биосфера
- •7.1. Генезис биосферы
- •7.1.1. Геологические условия возникновения биосферы
- •7.1.2. Эволюция биосферы. Живое вещество
- •7.1.3. Роль абиотических и биотических круговоротов
- •7.2. Биогеохимические процессы в биосфере
- •7.2.1. Состав вещества биосферы
- •7.2.2. Особенности основных биосферных циклов
- •Биосферный цикл углерода
- •Биосферный цикл азота
- •Биосферный цикл фосфора
- •7.2.3. Биохимические функции живого вещества
- •7.2.4. Биогенная миграция атомов и биогеохимические принципы
- •7.3. Экологическая структура биосферы
- •Биосфера - многокомпонентная иерархическая система
- •Прокариоты и эукариоты. Бактерии. Вирусы и сине-зелёные водоросли
- •7.3.3. Растения. Грибы. Животные
- •7.4. Глобальное биологическое разнообразие и подходы к его изучению
- •7.4.1. Современные представления о видовом разнообразии биосферы74
- •7.4.2. Современные подходы к исследованию биоразнообразия75
- •Популяционный подход
- •Экосистемный подход
- •7.5. Ноосферогенез
- •7.5.1. В. И. Вернадский о переходе биосферы в ноосферу
- •7.5.2. Естественноисторические аспекты трансформации биосферы в ноосферу
- •7.5.3. Антропоцентризм и биосферное мышление
- •Глава 8. Человек
- •8.1. Человек как вид
- •8.1.1. Человек: особый вид животных
- •8.1.2. Культурный и биологический аспекты эволюции человека
- •8.1.3. Нарушение основного биологического закона
- •8.2. Сознание и поведение
- •8.2.1. Функции головного мозга. Успехи нейрофизиологии
- •8.2.2. Поведение
- •8.2.3. Бихевиоризм
- •8.2.4. Гештальтпсихология
- •8.2.5. Этология и социобиология
- •8.3. Современное мировоззрение и планетарные проблемы
- •8.3.1. Проблема формирования современного мировоззрения
- •8.3.2. Глобальные последствия развития цивилизации
- •8.3.3. Деятельность «Римского клуба» и института л. Брауна «Worldwatch»
- •8.3.4. Новые ценности85
- •8.4. Концепция устойчивого развития
- •8.4.1. Экологическая и экономическая компоненты деятельности
- •8.4.2. Общие положения концепции устойчивого развития
- •8.4.3. Условия устойчивого развития и ключевые понятия концепции
- •8.5. Искусственный интеллект (ии)
- •8.5.1. Основные направления развития ии
- •8.5.2. Знания и их представление
- •8.5.3. Проблема понимания естественного языка
- •Глава 9. Иерархия мироздания
- •9.1. Макромир
- •9.1.1. Основные этапы развития представлений о Вселенной
- •9.1.2. Релятивистская космология (а. Эйнштейн, а. А. Фридман)
- •9.1.3. Концепция расширяющейся Вселенной
- •9.1.4. Концепция «Большого Взрыва»
- •9.1.5. Антропный принцип90
- •9.2. Мезомир
- •9.2.1. Эволюция планеты Земля
- •9.2.2. Экологическая структура мезомира
- •9.2.3. Информационные свойства мезомира
- •9.3. Микромир
- •9.3.1. Учение об элементарных частицах
- •9.3.2. Элементарная структура вещества. Атом
- •9.3.3. Устойчивость и неустойчивость частиц. Термоядерные процессы. Ядро атома
- •9.3.4. Фундаментальные взаимодействия и законы природы92
- •9.3.5. Фундамент материи: физический вакуум и его состояния93
- •9.4. Виртуальные реальности
- •9.4.1.Значение термина «виртуальная реальность»
- •9.4.2. Компьютерная виртуальная реальность
- •9.4.3. Способы существования виртуальной реальности
- •9.4.4. О философии виртуальной реальности и киберпространства
- •9.5. Поиск внеземных цивилизаций
- •9.5.1. О возможности существования жизни и разума во Вселенной
- •9.5.2. О возможности информационного контакта с внеземными цивилизациями
- •9.5.3. О возможных формах технологической активности разума во Вселенной
- •Летопись естественнонаучных открытий Период становления физики как науки
- •Первый этап развития естествознания (кон. XVII в. – 60 годы XIX в.)
- •Второй этап развития естествознания
- •Период современной физики
- •Важнейшие открытия в биологии и медицине в хх веке
- •Хронология клонирования
- •Летопись открытий в химии
- •Зарождение научной химии
- •Утверждение в химии атомно-молекулярного учения
- •Великие открытия в химии в хх веке
- •Астрономия в хх веке
- •Литература по главам Глава 1. Структура естествознания
- •Глава 2. Этапы развития естествознания
- •Глава 3. Фундаментальные концепции естествознания
- •Глава 4. Концепции движения, пространства и времени
- •Глава 5. Хаос. Самоорганизация. Сложность
- •Глава 6. Жизнь
- •Глава 7. Биосфера
- •Глава 8. Человек
- •Глава 9. Иерархия мироздания
- •Литература дополнительная
- •Словарь терминов
- •Примечания
Летопись естественнонаучных открытий Период становления физики как науки
Начало XVII в. - 80-е гг. XVII в. Физика развивается как самостоятельный раздел науки. Основоположником её становится Г. Галилей.
-
1600 г. Вышел в свет трактат У. Гильберта «О магните, магнитных телах и о большом магните Земле», в котором заложены основы электро- и магнитостатики.
-
1603 г. Открыта фосфоресценция (В. Каскариоло).
-
1604 г. Вышел в свет трактат И. Кеплера по оптике «Дополнения к Вителлию», где помещены его теория зрения, теория камеры-обскуры, сформулирован один из основных законов фотометрии - закон обратной пропорциональности между освещенностью и квадратом расстояния до источника света.
-
1607 г. Попытки Г. Галилея измерить скорость света с помощью сигналов фонаря.
-
1609 г. В труде «Новая астрономия» И. Кеплер излагает первые два закона движения планет и высказывает мысль о том, что вес тела составляет общую тенденцию всех тел к соединению. Г. Галилей сконструировал зрительную трубу и использовал ее как телескоп для астрономических наблюдений, что привело к революционным изменениям в астрономии, в частности к возникновению оптической астрономии.
-
1610 г. Г. Галилей при помощи, сконструированной им зрительной трубы с 30-кратным увеличением, открыл четыре спутника Юпитера. Вышел в свет труд Г. Галилея «Звездный вестник», где помещены его астрономические открытия гор и впадин на Луне, четырех спутников Юпитера, новых звезд, которые невозможно видеть невооруженным глазом. Высказана мысль о том, что Млечный Путь состоит из бесконечного множества звезд. Вскоре Галилей открыл также фазы Венеры и пятна на Солнце.
-
1610...1614 г.г. Г. Галилей конструирует свои микроскопы. Благодаря Галилею линзы и оптические приборы стали мощными орудиями научных исследований.
-
1611 г. Вышел в свет труд И. Кеплера «Диоптрика», в котором дана теория зрительной трубы, в частности конструкция трубы, которую теперь называют кеплеровой. В этом труде и в предыдущем («Дополнения к Вителлию») изложена элементарная геометрическая оптика.
-
1619 г. Вышел в свет трактат И. Кеплера «Гармония мира», в котором содержится третий закон движения планет.
-
1621 г. В. Снеллиус экспериментально открыл закон преломления света.
-
1625 г. Открытие вариации магнитного склонения (Г. Геллибранд).
-
1627 г. Вышел в свет труд Р. Декарта «Рассуждения о методе».
-
1628 г. Итальянский ученый Б. Кастелли установил закон обратной пропорциональности скорости течения жидкости в трубах площади поперечного сечения.
-
1632 г. Вышел в свет известный труд Г. Галилея «Диалог о двух основных системах мира - птолемеевой и коперниковой», где, в частности, содержатся два важных принципа современной физики - принцип инерции и принцип относительности.
-
1636 г. Вышел в свет трактат М. Мерсенна «Универсальная гармония», где изложены его исследования по акустике.
-
1637 г. Вышел в свет труд Р. Декарта «Диоптрика», где излагается идея эфира как переносчика света, дается теоретическое доказательство закона преломления, которое было высказано Декартом еще в 1630 г. Экспериментально закон преломления установлен в 1621 г. В. Снеллиусом. Р. Декарт ввел понятие переменной величины и функции.
-
1638 г. Вышел в свет труд Г. Галилея «Беседы и математические доказательства, касающиеся двух новых областей науки...», в котором, в частности, содержится идея конечности скорости распространения света и постановки эксперимента для ее определения, утверждение, что при отсутствии сопротивления среды все тела падают с одинаковой скоростью; законы свободного падения (пропорциональность скорости падающего тела времени падения, и пропорциональность пройденного пути квадрату времени), закон сложения перемещений и т. п. Итальянский ученый Дж. Б. Бальяни впервые четко разграничивает понятие веса и массы тела и указывает на пропорциональность веса массе.
-
1643 г. Открытие атмосферного давления, способа получения вакуума и создание первого барометра (Э. Торричелли). Установление Э. Торричелли формулы для скорости истечения жидкости из узкого отверстия в открытом сосуде (формула Торричелли).
-
1644 г. Вышел в свет труд Р. Декарта «Начала философии», в котором впервые четко сформулирован закон инерции, дана теория магнетизма и изложена первая космогоническая гипотеза. Здесь же помещен и его закон сохранения количества движения. М. Мерсенн дал количественное описание наблюдений, выполненных У. Гильбертом.
-
1646...1647 гг. Б. Паскаль подтвердил существование атмосферного давления, повторив опыт Торричелли, и экспериментально обнаружил уменьшение атмосферного давления с высотой.
-
1647 г. Итальянский математик Б. Кавальери в трактате «Шесть геометрических упражнений» дал формулу линзы.
-
1648 г. Открытие дисперсии света (И. Марци).
-
1650 г. О. Герике изобрел воздушный насос.
-
1653 г. Установление Б. Паскалем закона распределения давления в жидкости (закон Паскаля), опубликован в 1663 г.
-
1655 г. Изобретение ртутного термометра.
-
1657 г. Х. Гюйгенс сконструировал маятниковые часы со спусковым механизмом, ставшие основой точной экспериментальной техники (проект соединения маятника со счетчиком предлагал Галилей еще в 1636 г.). Изобретен водяной барометр (О. Герике).
-
1659 г. Р. Бойль и Р. Гук усовершенствовали воздушный насос Герике.
-
1660 г .Х. Гюйгенс и Р. Гук установили постоянные точки термометра - точку таяния льда и точку кипения воды. Вышел в свет труд Р. Бойля «Новые опыты..., касающиеся упругости воздуха». О. Герике сконструировал основанную на трении электрическую машину.
-
1661 г. Р. Бойль в труде «Химик-скептик» сформулировал понятие химического элемента как простейшей составной части тела.
-
1662 г. Р. Бойль открыл зависимость давления газа от объема, Независимо от Бойля этот же закон установил Э. Мариотт в 1676 г. Отсюда и современное название - закон Бойля - Мариотта. П. Ферма сформулировал оптический принцип, названный его именем (принцип Ферма).
-
1665 г. Опубликован труд Ф. Гримальди «Физико-математический трактат о свете, цветах и радуге», в котором содержится открытие явления дифракции (интерференции) света. Вышел в свет трактат Р. Гука «Микрография», в котором описаны его микроскопические наблюдения. И. Ньютон вывел обратно пропорциональную зависимость силы тяготения квадрату расстояния между притягивающимися телами.
-
1666 г. Открытие И. Ньютоном явления разложения белого света в спектр (дисперсия света) и хроматической аберрации.
-
1667 г. Вышел в свет труд Л. Магалотти «Очерки о естественнонаучной деятельности Академии опытов», в котором изложены результаты коллективной работы, проводимой академиками флорентийской Академии опытов в 1657...1667 гг. Описаны термометры, ареометр, гигрометр, маятник с бифилярным подвесом, опыты по тепловому расширению тел и получению вакуума. Дж. Борелли вывел закон столкновения неупругих тел.
-
1668 г. И. Ньютон сконструировал первый зеркальный телескоп (телескоп-рефлектор).
-
1669 г. Х. Гюйгенс дал теорию удара упругих тел и установил закон сохранения количества движения (mv) и закон «живых сил» (mv2/2). Э. Бартолин открыл двойное лучепреломление света в кристаллах исландского шпата. Открыт 15-й элемент - фосфор (Г. Брандт). Немецкий химик И. Бехер выдвинул гипотезу флогистона.
-
1670...1671 г. г. В сочинении «Метод флюксий» (опубликовано в 1736 г.) И. Ньютон наиболее полно разработал дифференциальное и интегральное исчисления.
-
1684 г. систематическое изложение дифференциального исчисления, а в 1686 г. изложение интегрального исчисления опубликовал Г. Лейбниц.
-
1672 г. Вышел в свет труд О. Герике «Новые, так называемые магдебургские опыты о пустом пространстве». Впервые с приемлемой точностью измерено расстояние до Солнца (Ж. Ришар, Д. Кассини).
-
1674 г. Р. Гук в трактате «О движении Земли» высказал идею тяготения и представил свою систему мироздания. В 1680 г. Р. Гук пришел к выводу, что сила тяготения обратно пропорциональна квадрату расстояния.
-
1675 г. Р. Гук открыл основной закон упругости (закон Гука) и Ньютон выдвинул корпускулярную гипотезу света. Исследуя интерференцию и дифракцию света, И. Ньютон открыл так называемые «кольца Ньютона».
-
1676 г. О. Ремер в результате наблюдений спутников Юпитера сделал вывод о конечности скорости распространения света и по данным наблюдений впервые определил ее величину - 214000 км/сек, (до этого Дж. Порта, И. Кеплер, Р. Декарт и др. считали скорость света бесконечной). Э. Мариотт предложил рассчитывать высоту места по данным барометра.
-
1678 г. Х. Гюйгенс обнаружил явления двойного лучепреломления в кварце и поляризации света. Создание Х. Гюйгенсом волновой теории. Вышел в свет труд Х. Гюйгенса «Маятниковые часы», в котором приведены теория физического маятника, понятие момента инерции и законы центробежной силы.
-
1680 г. Открытие зависимости точки кипения воды от давления (Д. Папен). В 1680 г. Д. Папен изобрел паровой котел с предохранительным клапаном.
-
1681 г. Х. Гюйгенс объяснил изменение периода колебаний маятника изменением ускорения силы тяжести, выдвинул идею об измерении ускорения силы тяжести при помощи секундного маятника и первым пришел к выводу о том, что Земля у полюсов сплюснута.
-
1686 г. Найдена барометрическая формула (Э. Галлей). Введение Г. Лейбницем понятия «живой силы» (энергии) как произведения массы тела на квадрат его скорости.