
- •Содержание
- •Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой
- •Глава 1 пределы
- •Глава 2 дифференциальное исчисление функций одной независимой переменной
- •§ 1. Понятие производной
- •§2. Основные правила дифференцирования.
- •§3. Дифференцирование сложной функции
- •§4. Производные высших порядков
- •§5. Дифференциал функции
- •Тогда, воспользовавшись формулой ,
- •§6. Применение производной при решении прикладных задач
- •Решение. Скорость прямолинейного движения
- •Глава 3 Исследование функций методами дифференциального исчисления
- •§1. Интервалы монотонности функции
- •Решение. Найдем производную заданной функции: .
- •§2. Экстремум функции
- •Глава 4 неопределенный интеграл4
- •§1. Непосредственное интегрирование
- •Основные свойства неопределенного интеграла:
- •§2.Интегрирование способом подстановки (метод замены переменной)
- •§ 3. Интегрирование по частям
- •Примеры.
- •§4. Применение неопределенного интеграла при решении прикладных задач
- •Глава 5 определенный интеграл
- •§1.Определенный интеграл и его непосредственное
- •Интегрирование
- •Основные свойства определенного интеграла
- •§2. Приложение определенного интеграла для вычисления площадей плоских фигур
- •§3. Приложение определенного интеграла к решению физических задач
- •Глава 6 дифференциальные уравнения
- •§1.Основные понятия
- •§2.Уравнения с разделяющимися переменными
- •§3. Однородные дифференциальные уравнения
- •§4. Задачи на составление дифференциальных уравнений
- •Глава 7 Элементы теории вероятностей и математической статистики
- •§ 1. Основные понятия
- •Вероятность случайного события – это количественная оценка объективной возможности появления данного события.
- •§ 2. Числовые характеристики распределения случайных величин
- •§4. Генеральная совокупность. Оценка параметров генеральной совокупности по ее выборке
- •§5. Интервальная оценка. Интервальная оценка при малой выборке. Распределение Стьюдента
- •§6. Проверка гипотез. Критерии значимости
- •§ 7. Элементы корреляционного и регрессионного анализа
- •7.1. Характер взаимосвязи между признаками
- •7.2. Проведение корреляционного анализа
- •7.3. Элементы регрессионного анализа
- •Лабораторные работы по статистической обработке результатов
- •Статистическая обработка данных измерения роста
- •Провести статистический анализ для следующих совокупностей данных
- •Список литературы
- •Учебно-методическое пособие к практическим занятиям по высшей математике и математической статистике Авторы- составители:
- •614990, Г. Пермь,ул. Большевистская,85
Глава 5 определенный интеграл
§1.Определенный интеграл и его непосредственное
Интегрирование
Определенным интегралом в пределах от а до b от функции f(x), непрерывной на отрезке [a,b], называется приращение любой ее первообразной F(x) при изменении аргумента x от значения x=a до значения x=b:
.
Основные свойства определенного интеграла
-
1.
2.
3.
4.
5.
, где С - постоянная величина.
Рассмотрим следующие примеры.
1. Вычислить интеграл
.
Найдем одну из первообразных F(x) для функции 4x3 и вычислим значение определенного интеграла:
.
2. Вычислить интеграл
.
Используя правило вычисления определенного интеграла и его свойства, получим:
3. Вычислить интеграл
.
Первообразную
F(x)
для функции
получим, вычислив неопределенный
интеграл. Для этого введем новую
переменную
U=sinx,
тогда
dU=cosxdx.
Неопределенный интеграл примет вид
Отсюда
и определенный интеграл равен
.
4. Вычислить интеграл
.
Для
нахождения соответствующего
неопределенного интеграла
применим формулу интегрирования по
частям, т.е. полагая, что
Отсюда
Тогда
.
Следовательно,
Вычислить определенные интегралы: