
- •Содержание
- •Никакой достоверности нет в науках там, где нельзя приложить ни одной из математических наук, и в том, что не имеет связи с математикой
- •Глава 1 пределы
- •Глава 2 дифференциальное исчисление функций одной независимой переменной
- •§ 1. Понятие производной
- •§2. Основные правила дифференцирования.
- •§3. Дифференцирование сложной функции
- •§4. Производные высших порядков
- •§5. Дифференциал функции
- •Тогда, воспользовавшись формулой ,
- •§6. Применение производной при решении прикладных задач
- •Решение. Скорость прямолинейного движения
- •Глава 3 Исследование функций методами дифференциального исчисления
- •§1. Интервалы монотонности функции
- •Решение. Найдем производную заданной функции: .
- •§2. Экстремум функции
- •Глава 4 неопределенный интеграл4
- •§1. Непосредственное интегрирование
- •Основные свойства неопределенного интеграла:
- •§2.Интегрирование способом подстановки (метод замены переменной)
- •§ 3. Интегрирование по частям
- •Примеры.
- •§4. Применение неопределенного интеграла при решении прикладных задач
- •Глава 5 определенный интеграл
- •§1.Определенный интеграл и его непосредственное
- •Интегрирование
- •Основные свойства определенного интеграла
- •§2. Приложение определенного интеграла для вычисления площадей плоских фигур
- •§3. Приложение определенного интеграла к решению физических задач
- •Глава 6 дифференциальные уравнения
- •§1.Основные понятия
- •§2.Уравнения с разделяющимися переменными
- •§3. Однородные дифференциальные уравнения
- •§4. Задачи на составление дифференциальных уравнений
- •Глава 7 Элементы теории вероятностей и математической статистики
- •§ 1. Основные понятия
- •Вероятность случайного события – это количественная оценка объективной возможности появления данного события.
- •§ 2. Числовые характеристики распределения случайных величин
- •§4. Генеральная совокупность. Оценка параметров генеральной совокупности по ее выборке
- •§5. Интервальная оценка. Интервальная оценка при малой выборке. Распределение Стьюдента
- •§6. Проверка гипотез. Критерии значимости
- •§ 7. Элементы корреляционного и регрессионного анализа
- •7.1. Характер взаимосвязи между признаками
- •7.2. Проведение корреляционного анализа
- •7.3. Элементы регрессионного анализа
- •Лабораторные работы по статистической обработке результатов
- •Статистическая обработка данных измерения роста
- •Провести статистический анализ для следующих совокупностей данных
- •Список литературы
- •Учебно-методическое пособие к практическим занятиям по высшей математике и математической статистике Авторы- составители:
- •614990, Г. Пермь,ул. Большевистская,85
Глава 4 неопределенный интеграл4
§1. Непосредственное интегрирование
Функция
называется первообразной
для функции
,
если
или
.
Любая
непрерывная функция
имеет бесконечное множество первообразных,
которые отличаются друг от друга
постоянным слагаемым С.
Совокупность
всех первообразных для функции
называется неопределенным
интегралом
от этой функции.
Основные свойства неопределенного интеграла:
или
Таблица простейших интегралов:
|
|||
1. |
|
7. |
|
2. |
|
8. |
|
3. |
|
9. |
|
4. |
|
10.
|
|
5. |
|
11. |
|
6. |
|
12.
|
|
Проинтегрировать
функцию
- значит, найти её неопределенный
интеграл. Непосредственное интегрирование
основано на прямом использовании
основных свойств неопределенного
интеграла и таблицы простейших
интегралов.
Рассмотрим следующие примеры:
1. Найти интеграл
.
Разделив почленно числитель на знаменатель, разложим подынтегральную функцию на слагаемые, после чего проинтегрируем каждое из полученных выражений:
Через С обозначен результат суммирования всех произвольных постоянных, получающихся при интегрировании каждого слагаемого.
2. Вычислить интеграл
Представим подынтегральную функцию следующим образом:
Тогда
3. Найти интеграл
Представим подынтегральную функцию в таком виде:
Подставим полученное выражение :
4. Вычислить интеграл
Преобразуем подынтегральную функцию таким образом:
Подставляя полученную функцию, вычисляем интеграл:
Используя правила интегрирования и таблицу интегралов, найти следующие интегралы: