Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
История развития физики..doc
Скачиваний:
81
Добавлен:
22.11.2018
Размер:
341.5 Кб
Скачать
      1. Теория электромагнитного поля

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны, а взгляды самого Фарадея не были математически оформлены. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали уверенность, что свет имеет электромагнитную природу, откуда следовало, что теория электромагнитных явлений тоже должна быть близкодейственной.

Важным фактором стала и глубокая разработка к середине XIX века теории дифференциальных уравнений в частных производных для сплошных сред — по существу был готов математический аппарат теории поля.

В этой атмосфере и появилась теория Максвелла, которую её автор скромно называл математическим пересказом идей Фарадея.

В первой работе (1855—1856) Максвелл дал ряд уравнений в интегральной форме для постоянного электромагнитного поля на основе гидродинамической модели (силовые линии соответствовали трубкам тока). Эти уравнения вобрали всю электростатику, электропроводность и даже поляризацию. Магнитные явления моделируются аналогично. Во второй части работы Максвелл, уже не приводя никаких аналогий, строит модель электромагнитной индукции.

В последующих работах Максвелл формулирует свои уравнения в дифференциальной форме и вводит ток смещения. Он предсказывает существование электромагнитных волн и показывает, что их скорость равна скорости света, предсказывает давление света.

Завершающий труд Максвелла — «Трактат об электричестве и магнетизме» (1873) содержит полную систему уравнений поля в символике Хевисайда, который предложил наиболее удобный для этого аппарат — векторный анализ. Современный вид уравнениям Максвелла позже придал Герц.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её проверку. Опыты Герца однозначно подтвердили правоту Максвелла.

Уже в 1887 году Герц построил первый в мире радиопередатчик (вибратор Герца); приёмником служил резонатор (разомкнутый проводник). В том же году Герц обнаружил ток смещения в диэлектрике (заодно открывфотоэффект). В следующем году Герц открыл стоячие электромагнитные волны, позже с хорошей точностью измерил скорость распространения волн, обнаружил для них те же явления, что и для света: отражение, преломление, интерференция, поляризация и др.

В 1890 году Бранли изобрёл чувствительный приёмник радиоволн — когерер. Как ни странно, прошло несколько лет, прежде чем Попов и Маркони догадались соединить когерер с электрозвонком, создав первый аппарат длярадиосвязи. Когерер ловил радиоволны на расстоянии до 40 метров (Оливер Лодж, 1894), а с антенной — намного дальше. Так началась эра радио.

      1. Термодинамика, газы, молекулярная теория

Успехи химии и невозможность взаимопревращения химических элементов стали весомым аргументом в пользу существования молекул как дискретных первоносителей химических свойств. Джон Дальтон ещё в начале XIX века объяснил с помощью молекулярной теории закон парциальных давлений и составил первую таблицуатомных весов химических элементов — как позже выяснилось, ошибочную, так как он исходил из формулы для воды HO вместо H2O, а некоторые соединения посчитал элементами.

1802: Гей-Люссак и Дальтон открывают закон расширения газа при нагревании.

В 1808 году Гей-Люссак открыл парадокс: газы соединялись всегда в кратных объёмных отношениях, например: C + O2 (по одному объёму) = CO2 (два объёма). Для объяснения этого противоречия с теорией ДальтонаАвогадро в 1811 году предложил разграничить понятие атома и молекулы. Он также предположил, что в равных объёмах газов содержится равное число молекул (а не атомов, как считал Дальтон). Тем не менее вопрос о существовании атомов был спорным ещё долго.

1822: Фурье публикует «Аналитическую теорию тепла», где появляется уравнение теплопроводности.

Работы по кинетике газов начали Крёниг (1856) и Рудольф Клаузиус. Последний предложил правильную модель идеального газа и объяснилфазовые переходы.

Основы термодинамики заложили в середине XIX века Вильям Томсон (лорд Кельвин) и Клаузиус. Они сформулировали два закона (начала) термодинамики; впрочем, первый закон уже знал Герман Гельмгольц. Понятие теплорода было окончательно похоронено. Рэнкин и Томсон ввели взамен общее понятие энергии (1852), уже не только кинетической, одновременно Майер и Джоуль формулируют всеобщий закон сохранения энергии.

После 1862 года Клаузиус исследовал необратимые процессы, не укладывающиеся в механическую модель, и предложил понятиеэнтропии. Начинается обсуждение «тепловой смерти Вселенной» (Томсон, позже Клаузиус), потому что принцип возрастания энтропии несовместим с вечностью Вселенной.

Чрезвычайно важными стали работы Джемса К. Максвелла. В 1860 годуон вывел статистический закон распределения скоростей молекул газа, получил формулы для внутреннего трения и диффузии, создал набросок кинетической теории теплопроводности.

Дальнейшие успехи кинетической теории газов и термодинамики во многом связаны с Людвигом Больцманом и Ван дер Ваальсом. Помимо прочего, они пытались вывести термодинамики на базе механики, и неудача этих попыток для необратимых процессов вынудила Больцмана предположить в 1872 году, что Второе начало имеет не точный, а статистический характер. Более 20 лет эта догадка не вызывала интереса среди физиков, затем развернулась оживлённая дискуссия. Примерно с 1900 г., после работ Планка, Гиббса, Эренфеста и других, идеи Больцмана получили признание.

С 1871 года Больцман (и позже Максвелл) развивают статистическую физику. Чрезвычайно плодотворной оказалась эргодическая гипотеза(средние по времени совпадают со средними по ансамблю частиц).

Кроме открытия электрона (см. ниже), решительным аргументом в пользу атомистики стала теория броуновского движения (Эйнштейн, 1905). После работ Смолуховского и Перрена, подтвердивших эту теорию, даже убеждённые позитивисты уже не оспаривали существование атомов.