Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы Сандры!.doc
Скачиваний:
6
Добавлен:
21.11.2018
Размер:
326.66 Кб
Скачать

Маркетинговые исследования

10. Методы анализа данных в маркетинговых исследованиях: корреляцонно-регрессионный, дисперсионный, ковариационный, факторный, кластерный.

Часто, чтобы полностью понять сложность имеющейся информации, нам приходится изучать данные, полученные от респондентов, с помощью многомерных статистических методов. Наша цель — заставить "заговорить данные" понятным и уверенным голосом.

Начинающий маркетолог часто попадает в плен многообразия существующих методов анализа и забывает о самой цели исследования. В последние пять лет акцент на технике анализа становится все более превалирующей тенденцией, поскольку имеющиеся статистические программные пакеты значительно упростили применение этих методов.

Анализ дисперсионный

Статистический метод установления структуры связи между результативным и факторными признаками; разложение полной вариации зависимой переменной (полная вариация определяется как сумма квадратов отклонений от среднего) в пропорции, определяемой изменениями отдельных каузальных переменных или их групп плюс необъяснимые или остаточные изменения; может быть основой для проверки гипотез относительно существенности отдельных переменных или их групп в регрессионном анализе.

Дисперсионный анализ (ANOVA) чрезвычайно полезный инструмент в практике маркетинговых исследований, поскольку именно его используют чаще всего для снижения кумулятивной ошибки. Она представляет собой кумулятивный эффект ошибки I рода (ошибка первого рода означает утверждение, что два числа различаются, когда фактически они не различаются между собой) во всех парных сравнениях. Однако, прежде чем вы решите использовать дисперсионный анализ, вы должны убедиться, что вы имеете соответствующие данные. Дисперсионный анализ служит методом выявления различий между номинальными независимыми переменными, влияющими на значения метрической зависимой переменной. Помимо того, что вы должны иметь номинальную независимую переменную (например, торговую марку, товар) и метрическую зависимую переменную (например, рейтинги эффективности, рейтинги важности, уровни осведомленности), ваши данные должны удовлетворять следующим допущениям дисперсионного анализа; значения переменных в выборке должны подчиняться закону нормального распределения и дисперсии совокупностей должны быть равны. Если окажется, что данные в значительной степени не удовлетворяют этим допущениям, то следует использовать непараметрические методы, например критерий Краскела—Уоллеса.

Если вы установили, что для анализа ваших данных подходит дисперсионный анализ, то запустите программу его выполнения и вычислите значение /-статистики, чтобы определить значимость полученного результата. Использование F-стзтистиКи позволяет проверить нулевую гипотезу об одинаковых значениях уровней независимых переменных с помощью сравнения дисперсии, обусловленной факторным экспериментом, с дисперсией, обусловленной ошибкой.

Факторный анализ

Чаше всего факторный анализ используют для снижения числа данных и установления характера взаимосвязи переменных. Мы можем задать 20 вопросов на одну тему, но с их помощью в действительности можно оценить небольшое число восприятий респондентами какого-либо объекта. Мы хотели бы узнать, "какие" группы ответов присутствуют в наших данных, Мы можем провести исследование, касающееся конкретной марки автомобиля, и проверка группирования ответов выявит, что респонденты оценивают автомобиль, учитывая только две-три главные характеристики (например, стиль, престижность и т.д.), хотя мы задали им много вопросов. Или нам хочется использовать часть пунктов из анкеты, чтобы вычислить некоторый результат (например, используя оценки уровня обслуживания наших клиентов, определить степень удовлетворенности потребителей уровнем обслуживания). Мы видим, что оценки тесно взаимосвязаны, и использование их в последующем анализе создаст трудности при интерпретации результатов, обусловленные обшей дисперсией. Один из вариантов решения этой проблемы — использование не исходных переменных, а значений факторов, представляющих их комбинацию. Мы можем также изучить переменные, которые, вероятно, входят в состав различных факторов и использовать их средние значения или даже выбрать одну переменную из каждого фактора, чтобы представить все переменные, составляющие данный фактор. Мы может выбрать любой из этих вариантов, и наше решение зависит от уверенности в своих силах удовлетворительно интерпретировать и обобщать результаты.

Кластерный анализ

Кластерный анализ используют, в основном, для целей сегментации. Обычно различают сегментацию двух типов: первый тип — простая рыночная сегментация, когда изменение потребностей и мотиваций обусловлено, глазным образом, самими потребителями, а не обстоятельствами. Например, потребители одного сегмента ищут высокоэффективную камеру, которая не требует большого участия со стороны фотографа, другой сегмент ищет высокоэффективную камеру со множеством миниатюрных приспособлений, позволяющих экспериментировать, а еше один сегмент стремится найти камеру, которая работает по принципу "наведи и щелкни", и дает четкие фотографии даже если дрожит рука. Эти сегменты зависят от потребностей клиентов и не зависят от обстоятельств или причин, по которым используют камеру,

В основе второго типа сегментации лежит воздействие определенных обстоятельств. Например, выбор ресторана не всегда основан на одних и тех же нуждах. Он зависит от времени суток, общества, дня недели, причины торжества и т.д. Сегментация, зависящая от обстоятельств, обычно имеет место для продуктов и напитков, поскольку один потребитель может хотеть разную еду в зависимости от обстоятельств, побудивших его пойти в ресторан.

Для обоих типов рыночной сегментации на основе использования кластерного анализа данные должны измеряться в интервальной шкале, и вы должны иметь полный набор данных по каждому респонденту. По возможности, следует избегать использования значений, заменяющих пропущенные данные, например, заменяя пропущенное значение средним значением оставшихся данных. Это может оказаться неизбежным, но в конце концов вы поймете, что такая замена влияет на окончательный результат, и вы, по существу, имеете "искусственные данные".

После получения результатов следует определить профиль каждого из сегментов с помощью переменных, включенных в кластерный анализ. Во- первых, определите, к каким из переменных стремится каждый респондент и к каким переменным не стремится никто. Эти переменные характеризуют уровни рынка, а не уровни сегментации. Отделение их от остальных характеристик позволит легко идентифицировать потребности респондентов на уровне сегментации. Во-вторых, расположите оставшиеся атрибутивные средние в порядке убывания {от большего к меньшему). Кратко запишите ключевые темы и дайте каждому сегменту предварительное название. На следующем этапе определите профиль каждого из кластеров с помощью переменных, которые не участвовали в процессе кластеризации и которые включают: демографические, психографические характеристики; использование товара и мотивы поведения. Если кластеры не различаются по этим переменным, то, вероятно, что менеджменту будет от них немного пользы. Если окажется, что кластеры различаются по этим "внешним" переменным, то с помощью этой информации и информации о переменных, использованных для кластеризации, давайте название кластеру и опишите его, имея в виду маркетинговую стратегию в отношении каждого из этих сегментов.

Корреляционно-регрессионный анализ

Корреляция и регрессия – это методы входящие в группу экономико-математических методов, используемых при проведении маркетинговых исследований. Они используются для установления взаимосвязей между группами переменных, описывающих маркетинговую деятельность.

Но действие корреляции и регрессии затруднено в связи с:

- сложностью объекта изучения, нелинейностью маркетинговых процессов, временными лагами;

- сложностью измерения маркетинговых переменных. Трудно измерить реакцию потребителей на определенные стимулы, например рекламу;

- неустойчивостью маркетинговых взаимосвязей, обусловленной изменениями вкусов, привычек, оценок и др.

В условиях глубоких и быстрых изменений внешней среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. Математическая модель не способна к импровизации и не может приспособиться к изменениям внешней среды.

Расчет корреляций и расчет регрессий - это два последовательных этапа одного и того же анализа данных, который в маркетинге принято называть корреляционно-регрессионным анализом. Они выполняются в аналитическом режиме, который предназначен, в первую очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь, применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования, виды факторов и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку из данных - и "выход" - фильтрованную постановку задачи и выборку. В остальном он не ограничивает методику анализа.

Ковариационный анализ

Ковариационный анализ (Analysis of covariance (ANCOVA) ) — это специальный метод анализа дисперсий, в котором эффекты одной или более сторонних переменных, выраженных в метрической шкале, удаляют из зависимой переменной перед выполнением дисперсионного анализа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]