Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zachyot_po_biologii.doc
Скачиваний:
3
Добавлен:
20.11.2018
Размер:
214.53 Кб
Скачать

Вопрос 7.

Анаэробное дыхание - энергетический процесс окисления микроорганизмами органических веществ в анаэробных условиях(бескислородной среде), при котором окислителем служит не свободный кислород, а нитраты, нитриты и сульфаты.

При аэробном дыхании образующаяся в процессе гликолиза пировиноградная кислота в конечном итоге полностью окисляется кислородом до СО2 и воды. В первой фазе пировиноградная кислота расщепляется с образованием СO2 и водорода. Этот процесс протекает в матриксе митохондрий и включает в себя последовательность реакций, называемую циклом Кребса. Во второй фазе отщепившийся водород через ряд окислительно-восстановительных реакций — в так называемой дыхательной цепи — окисляется в конечном счете молекулярным кислородом до воды. Это происходит на так называемых кристах (гребневидных складках внутренней мембраны митохондрий).

Переходный этап между гликолизом и циклом Кребса

Каждая молекула пировиноградной кислоты поступает в матрикс митохондрий и здесь — в виде ацетильной группы (СН3СОО—) — соединяется с веществом, которое называется коферментом А (или сокращенно КоА), в результате чего образуется ацетилкофермент А (ацетил-КоА). Ацетильная группа содержит два атома углерода (2С), поэтому для того чтобы она могла образоваться, пировиноградная кислота (ЗС) должна угратить атом углерода.

Отщепление атома углерода в виде С02 называется реакцией декарбоксилирования. Это — окислительное декарбоксилирование, поскольку оно сопровождается окислением путем дегидрирования, в результате чего образуется восстановленный НАД.

Цикл Кребса

Этот цикл назван так в честь открывшего его в 1930-х годах исследователя — сэра Ганса Кребса. Его называют также «циклом трикарбоновых кислот» и «циклом лимонной кислоты», поскольку именно эти кислоты в нем участвуют.

Цикл Кребса протекает в матриксе митохондрий. Ацетильные группы (2С) вовлекаются в цикл, присоединяясь к 4С-соединению — щавелевоуксусной кислоте, в результате чего образуется лимонная кислота (6С). Далее следует цикл реакций, в которых поступившие в цикл ацетильные группы декарбоксилируются с образованием двух молекул СO2 и дегидрируются с высвобождением четырех пар атомов водорода, присоединяющихся к переносчикам, в результате чего образуются три молекулы восстановленного НАД и одна молекула восстановленного ФАД. Каждый оборот цикла дает также одну молекулу АТФ. (Напомним, что из одной молекулы глюкозы образуются две ацетильные группы, и значит, для окисления каждой молекулы глюкозы требуются два оборота цикла.) В конце цикла щавеле-воуксусная кислота регенерирует и может теперь присоединить к себе новую ацетильную группу.

Суммарное уравнение может быть записано в следующем виде:

С6Н12О6 + 6Н2О = 6СО2 + 4АТФ + 6Н2

Весь водород из молекулы глюкозы оказывается в конечном счете у переносчиков (НАД и ФАД). Весь углерод теряется в виде С02. (Может вызвать удивление присутствие в этом уравнении шести молекул воды. Вода нужна в качестве источника кислорода в реакциях декарбоксили-рования — именно такое происхождение имеет часть кислорода в СO2. Это, впрочем, деталь, которую можно и не учитывать.)

Вопрос 8. Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.

Осуществляется прокариотами (в редких случаях — и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом. Акцепторы с низким окислительно-восстановительным потенциалом (сера, SO42−, CO2) применяются только строгими анаэробами, гибнущими при появлении в среде кислорода. В корневых системах многих растений при гипоксии и аноксии, вызванных затоплением посевов в результате длительных дождей или весенних паводков, развивается анаэробное дыхание с использованием в качестве акцепторов электронов альтернативных кислороду соединений, например нитратов. Установлено, что растения, произрастающие на полях, удобренных нитратными соединениями, переносят переувлажнение почвы и сопутствующую ему гипоксию лучше, нежели такие же растения без нитратной подкормки.

Механизмы окисления органических субстратов при анаэробном дыхании, как правило, аналогичны механизмам окисления при аэробном дыхании. Исключением является использование в качестве исходного субстрата ароматических соединений. Обычные пути их катаболизма требуют молекулярного кислорода уже на первых стадиях, в анаэробных условиях осуществляются иные процессы, например, восстановительная деароматизация бензоил-КоА у Thauera aromatica с затратой энергии АТФ. Некоторые субстраты (например, лигнин) при анаэробном дыхании не могут использоваться.

Глико́лиз (фосфотриозный путь, или шунт Эмбдена — Мейерхофа, или путь Эмбдена-Мейергофа-Парнаса ) — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ. Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (пирувата), гликолиз в анаэробных условиях ведёт к образованию молочной кислоты (лактата). Гликолиз является основным путём катаболизма глюкозы в организме животных.

1.Нитратное и нитритное дыхание

2 Сульфатное дыхание

3 Фумаратное дыхание

4 Железистое дыхание

Гликолиз — катаболический путь исключительной важности. Он обеспечивает энергией клеточные реакции, в том числе и синтез белка. Промежуточные продукты гликолиза используются при синтезе жиров. Пируват также может быть использован для синтеза аланина, аспартата и других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Вопрос 9. Белки́ (протеи́ны, полипепти́ды[1]) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана Фуркруа и других учёных, в которых было отмечено свойство белков коагулировать (денатурировать) под воздействием нагревания или кислот. В то время были исследованы такие белки, как альбумин («яичный белок»), фибрин (белок из крови) и глютен из зерна пшеницы. Голландский химик Геррит Мульдер провёл анализ состава белков и выдвинул гипотезу, что практически все белки имеют сходную эмпирическую формулу. Термин «протеин» для обозначения подобных молекул был предложен в 1838 году шведским химиком Якобом Берцелиусом[4]. Мульдер также определил продукты разрушения белков — аминокислоты и для одной из них (лейцина) с малой долей погрешности определил молекулярную массу — 131 дальтон. В 1836 Мульдер предложил первую модель химического строения белков. Основываясь на теории радикалов он сформулировал понятие о минимальной структурной единице состава белка, C16H24N4O5, которая была названа «протеин», а теория — «теорией протеина»[5]. По мере накопления новых данных о белках теория стала неоднократно подвергаться критике, но до конца 1850-х несмотря на критику ещё считалась общепризнанной.

К концу XIX века было исследовано большинство аминокислот, которые входят в состав белков. В 1894 году немецкий физиолог Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков[6]. В начале XX века немецкий химик Эмиль Фишер экспериментально доказал, что белки состоят из аминокислотных остатков, соединённых пептидными связями. Он же осуществил первый анализ аминокислотной последовательности белка и объяснил явление протеолиза.

Однако центральная роль белков в организмах не была признана до 1926 года, когда американский химик Джеймс Самнер (впоследствии — лауреат Нобелевской премии) показал, что фермент уреаза является белком.

Сложность выделения чистых белков затрудняла их изучение. Поэтому первые исследования проводились с использованием тех полипептидов, которые могли быть очищены в большом количестве, то есть белков крови, куриных яиц, различных токсинов, а также пищеварительных/метаболических ферментов, выделяемых после забоя скота. В конце 1950-х годов компания Armour Hot Dog Co. смогла очистить килограмм бычьей панкреатической рибонуклеазы А, которая стала экспериментальным объектом для многих учёных.

Идея о том, что вторичная структура белков — результат образования водородных связей между аминокислотами, была высказана Уильямом Астбери в 1933 году, но Лайнус Полинг считается первым учёным, который смог успешно предсказать вторичную структуру белков. Позднее Уолтер Каузман, опираясь на работы Кая Линдерстрём-Ланга, внёс весомый вклад в понимание законов образования третичной структуры белков и роли в этом процессе гидрофобных взаимодействий. В 1949 году Фред Сенгер определил аминокислотную последовательность инсулина, продемонстрировав таким способом, что белки — это линейные полимеры аминокислот, а не их разветвлённые (как у некоторых сахаров) цепи, коллоиды или циклолы. Первые структуры белков, основанные на дифракции рентгеновских лучей на уровне отдельных атомов были получены в 1960-х годах и с помощью ЯМР в 1980-х годах. В 2006 году Банк данных о белках (Protein Data Bank) содержал около 40 000 структур белков.

В XXI веке исследование белков перешло на качественно новый уровень, когда исследуются не только индивидуальные очищенные белки, но и одновременное изменение количества и посттрансляционных модификаций большого числа белков отдельных клеток, тканей или организмов. Эта область биохимии называется протеомикой. С помощью методов биоинформатики стало возможно не только обработать данные рентгенно-структурного анализа, но и предсказать структуру белка, основываясь на его аминокислотной последовательности. В настоящее время криоэлектронная микроскопия больших белковых комплексов и предсказание малых белков и доменов больших белков с помощью компьютерных программ по точности приближаются к разрешению структур на атомном уровне.

Эволюция белков зависит от уровня метаболизма видов.

Долгое время считалось, что основным фактором, от которого зависит скорость биологической эволюции, является давление естественного отбора, интенсивность которого связана со скоростью изменения окружающей среды. Однако недавние исследования показывают, что скорость эволюции видов может зависеть от их собственных физиологических особенностей.

Ученые из Калифорнии и Флориды впервые предложили модель, связывающую эволюцию белковых молекул с уровнем метаболизма отдельных видов.

В ходе данных исследований было продемонстрировано, что скорость эволюции белковых молекул так же зависит от температуры и размеров тела рассмотренных в работе видов, как и общий уровень метаболизма данных видов (данные параметры изучались у разных организмов, начиная от рыб и заканчивая млекопитающими). В частности, модель, предложенная в данной работе, предсказывает, что увеличение на 10 градусов средней температуры тела представителей некоего вида приводит к повышению скорости эволюционного изменения белковых молекул в 300 раз, а десятикратное уменьшение размеров тела увеличивает этот же показатель в 200 раз.

Суть концепции естетсвенного отбора, впервые описанной Чарльзом Дарвином в 1859 году, заключается в том, что некоторые наследственные фенотипические изменения, появляющиеся у живых организмов в ходе эволюции, помогают им выживать и размножаться, и поэтому сохраняются в популяции, а некоторые, наоборот, мешают, вследствие чего отсеиваются отбором.

В конечном счете, исследователи приходят к выводу о том, что эволюция белковых молекул, напрямую зависящая от скорости накопления генетических мутаций, сильно зависит от характеристик уровня метаболизма конкретного вида.

Вопрос 12. Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, идущий во время синтетической (S) фазы жизненного цикла клетки на матрице родительской молекулы ДНК. При этом генетический материал, зашифрованный в ДНК, удваивается и в процессе последующего деления делится между дочерними клетками. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков.

Ферменты (хеликаза, топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя (1958 г.). Ранее существовали и две другие модели: «консервативная» — в результате репликации одна молекула ДНК состоит только из родительских цепей, а другая — только из дочерних цепей; «дисперсионная» — все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК).

Процесс редупликации: раскручивание спирали молекулы — отделение одной цепи от другой на части молекулы ДНК — воздействие фермента ДНК-полимеразы на молекулу — присоединение к каждой цепи ДНК комплементарных нуклеотидов — образование двух молекул ДНК из одной.

Вопрос 13. Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) — международный научно-исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и идентифицировать 20–25 тыс. генов в человеческом геноме.

Проект начался в 1990 году, под руководством Джеймса Уотсона под эгидой Национальной организации здравоохранения США (англ.). В 2000 году был выпущен рабочий черновик структуры генома, полный геном — в 2003 году, однако и сегодня дополнительный анализ некоторых участков ещё не закончен. Частной компанией «Celera Genomics (англ.)» был запущен аналогичный параллельный проект, завершённый несколько ранее международного. Основной объём секвенирования был выполнен в университетах и исследовательских центрах США, Канады и Великобритании. Кроме очевидной фундаментальной значимости, определение структуры человеческих генов является важным шагом для разработки новых медикаментов и развития других аспектов здравоохранения.

Хотя целью проекта по расшифровке генома человека является понимание строения генома человеческого вида, проект также фокусировался и на нескольких других организмах, среди которых бактерии, в частности, Escherichia coli, насекомые, такие как мушка дрозофила, и млекопитающие, например, мышь.

Изначально планировалось определение последовательности более трёх миллиардов нуклеотидов, содержащихся в гаплоидном человеческом геноме. Затем несколько групп объявили о попытке расширить задачу до секвенирования диплоидного генома человека, среди них международный проект HapMap (англ.), «Applied Biosystems», «Perlegen», «Illumina», «JCVI», «Personal Genome Project» и «Roche-454».

Геном любого отдельно взятого организма (исключая однояйцевых близнецов и клонированных животных) уникален, поэтому определение последовательности человеческого генома в принципе должно включать в себя и секвенирование многочисленных вариаций каждого гена. Однако, в задачи проекта «Геном человека» не входило определение последовательности всей ДНК, находящейся в человеческих клетках; а некоторые гетерохроматиновые области (в общей сложности около 8 %) остаются несеквенированными до сих пор.

Задачи!!! Основные разделы этой программы как в России, так и во всем мире включают три главных направления научных исследований [ Баев А.А., 1990 ; Баев А.А., 1994 ]: 1) картирование и секвенирование генома; 2) структурно-функциональное изучение генома; 3) медицинскую генетику и генотерапию.

Предполагалось, что основной раздел программы, касающийся секвенирования всего генома, т. е. выяснения первичной последовательности всей молекулы ДНК одной клетки человека длиной около 1,5 м, состоящей из 3,5х109 нуклеотидов, завершен уже к 2003 году.

В итоге этой работы идентифицированы все гены человека, т. е. будет точно определено их число, взаиморасположение на генетической карте и структурно-функциональные особенности. Предполагается, что осуществление этого проекта, помимо колоссальных теоретических обобщений для фундаментальных наук, окажет огромное влияние на понимание патогенеза, предупреждение и лечение наследственных болезней, значительно ускорит исследование молекулярных механизмов, лежащих в основе развития очень многих моногенных нарушений, будет способствовать более эффективному поиску генетических основ мультифакториальных заболеваний и наследственной предрасположенности к таким широко распространенным болезням человека, как атеросклероз, ишемия сердца, психиатрические и онкологические заболевани

Вопрос 14. Ген — структурная и функциональная единица наследственности, контролирующая развитие определенного признака или свойства. Совокупность генов родители передают потомкам во время размножения.

В настоящее время, в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

Свойства гена

дискретность — несмешиваемость генов;

стабильность — способность сохранять структуру;

лабильность — способность многократно мутировать;

множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

аллельность — в генотипе диплоидных организмов только две формы гена;

специфичность — каждый ген кодирует свой признак;

плейотропия — множественный эффект гена;

экспрессивность — степень выраженности гена в признаке;

пенетрантность — частота проявления гена в фенотипе;

амплификация — увеличение количества копий гена.

Классификация

Структурные гены — уникальные компоненты генома, представляющие единственную последовательность, кодирующую определенный белок или некоторые виды РНК. (См. также статью гены домашнего хозяйства).

Функциональные гены — регулируют работу структурных генов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]