
- •Лабораторний практикум
- •Передмова
- •Вступ до практикуму
- •Що включає самостійна домашня підготовка?
- •Як отримати дозвіл на виконання роботи?
- •3. Виконання роботи та фіксування результатів вимірювання.
- •4. Як правильно оформити звіт?
- •Як захистити роботу?
- •Кафедра фізики
- •Звіт має містити такі складові елементи:
- •1. Формулювання мети та задачі, які ставилися в роботі
- •2. Метод, що використовується в роботі
- •3. Визначення робочої формули
- •4. Таблиця вимірюваних величин
- •6. Графіки
- •7. Висновки
- •Розділ 2. Правила наближених обчислень
- •7. Формули для наближених обчислень.
- •Розділ 3. Обчислення похибок фізичних вимірів
- •Прийнятi позначення та найважливiшi формули
- •Розділ 4. Метод найменших квадратів
- •Глава іі. Лабораторні роботи з основного курсу фізики Розділ 1. Механіка Лабораторна робота № 1.1. Визначення залежності моменту інерції системи від розподілу її маси відносно осі обертання
- •Вказівки до виконання роботи
- •Хiд роботи
- •Контрольні запитання
- •Лабораторна робота № 1.2. Визначення динамічної в’язкості рідини методом стокса
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 2. Молекулярна фізика Лабораторна робота № 2.1. Визначення коефіцієнта поверхневого натягу рідини методом відриву кільця
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 2.2. Визначення коефіцієнта теплопровідності твердих тіл методом регулярного режиму
- •Вказівки до виконання роботи
- •Хiд роботи
- •Контрольні запитання
- •Розділ 3. Електрика та магнетизм Лабораторна робота № 3.1. Вивчення розподілу потенціалу електростатичного поля
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 3.4. Градуювання термопари
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 3.6. Вивчення магнітного поля короткого соленоїда
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 3.7. Визначення питомого заряду електрона методом схрещених полів
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 3.8. Визначення ккд трансформатора
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 3.9. Визначення індуктивності котушки та дроселя
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 4. Коливання та хвилі Лабораторна робота № 4.1. Визначення параметрів згасання коливань фізичного маятника
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 4.2. Дослідження резонансних характеристик коливального контура
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 4.3. Визначення швидкості звуку в повітрі методом стоячих хвиль
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 4.4. Вивчення роботи релаксаційного генератора
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 5. Оптика Лабораторна робота № 5.1. Визначення довжини світлової хвилі за допомогою біпризми френеля
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 5.2. Визначення довжини світлової хвилі за допомогою дифракційної решітки
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 5.3. Дослідження поляризованого світла
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 5.4. Вивчення зорової труби
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 5.5. Вивчення мікроскопа
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 5.6. Визначення роботи виходу електрона з металів методом гальмування фотоелектронів в електричному полі
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 6. Фізика атомів, молекул та твердого тіла Лабораторна робота № 6.1. Визначення енергетичної ширини забороненої зони напівпровідника
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 6.2. ВИмірювання вольт-амперної характеристики напівпровідникового випрямляча
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 6.3. Вимірювання світлової характеристики вентильного фотоелемента
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 7. Атомна та ядерна Фізика Лабораторна робота № 7.1. Визначення активності радіоактивного препарату
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 7.2. Визначення коефіцієнта поглинання радіоактивного випромінювання різними матеріалами
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Глава ііі. Спецпрактикуми Розділ 1. Основи фізики навколишнього середовища Лабораторна робота № 11. Визначення коефіцієнта поглинання світла та концентрації домішок у розчинах
- •Вказівки до виконання лабораторної роботи
- •Опис приладу
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 12. Cедиментаційний аналіз
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 13. Визначення залежності коефiцiєнта поверхневого натягу рiдини від температури
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 14. Визначення абсолютної та відносної вологості повітря
- •Вказівки до виконання лабораторної роботи
- •Будова приладу
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 15. Визначення невідомого газу за спектром його випромінювання
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 16. Дослідне вивчення залежності атмосферного тиску від висоти над землею
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 17. Визначення концентрації розчину цукру за допомогою поляриметра
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 18. Кількісний колориметричний аналіз. Визначення концентрації домішок в газах і рідинах
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 2. Геометрична оптика Лабораторна робота № 21. Визначення показника заломлення скла за допомогою мікроскопа
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 22. Визначення показника заломлення рідини та концентрації розчину за допомогою рефрактометра
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 23. Визначення фокусної відстані, оптичної сили та радіусу кривизни збиральної лінзи
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 24. Визначення фокусної відстані і положення головних площин складної оптичної системи
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 25. Вивчення зорової труби
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 26. Вивчення мікроскопа
- •Вказівки до виконання лабораторної роботи
- •Хід роботи
- •Контрольні запитання
- •Розділ 3. Фізичний експеримент на лінії з еом Лабораторна робота № 31. Вивчення роботи анологово-цифрового перетворювача
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 32. Визначення коефіцієнта теплопровідності твердих тіл методом регулярного режиму
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Лабораторна робота № 33. Визначення параметрів згасання коливань фізичного маятника
- •Вказівки до виконання роботи
- •Хід роботи
- •Контрольні запитання
- •Список літератури
- •Додаток і
- •Додаток іі
Хід роботи
-
Ввімкнути лазер. Поставити на шляху променя біпризму Френеля так, щоб її ребро проходило через центр пучка. Тоді він роздвоїться, і на екрані буде спостерігатись не одна світна пляма, а дві.
-
Виміряти відстань АВ між ними та відстань ОО1 від зображення до біпризми (рис. 5.1.3).
-
Обчислити
за формулою (5.1.6).
-
Встановити біпризму Френеля так, щоб її ребро було вертикальним і приблизно паралельним щілині. За біпризмою на відстані 20..30 см від неї встановити окулярний мікрометр (спеціальний мікроскоп). Дивлячись у мікрометр, встановити його так, щоб інтерференційна картина була у центрі поля зору.
-
Інтерференційна картина найчіткіша, коли ребро біпризми паралельне щілині, тому повертаючи біпризму праворуч та ліворуч, добитись чіткості картини. Змінюючи ширину щілини добитись найкращого співвідношення яскравості та чіткості картини.
-
Визначити ціну поділки мікрометричної шкали в окулярі.
-
По обидва боки від незабарвленої центральної смуги розташовані різнокольорові смуги 1, 2 та 3-го порядків. За допомогою мікрометричної шкали слід визначити відстань від центра найяскравішої незабарвленої смуги до кольорових компонент смуг 1-го та 2-го порядків (як правило, добре видно смуги червоного, жовтого та зеленого кольорів).
-
Визначити відстань O1S від біпризми до щілини.
-
За формулою (5.1.7) розрахувати b.
-
Виміряти L – відстань від щілини до об’єктива мікрометра.
-
За формулою (5.1.5) розрахувати .
Контрольні запитання
-
Побудувати хід променів у біпризмі Френеля.
-
Які джерела називають когерентними?
-
Що таке довжина когерентності?
-
Яку величину називають радіусом когерентності?
-
Що таке оптична довжина шляху та оптична різниця ходу?
-
Яким чином та за яких умов виникають інтерференційні максимуми та мінімуми?
-
Яким чином виникають кольори тонких плівок?
-
Яке оптичне явище називають інтерференцією?
-
Чи зміниться ширина інтереференційних смуг при наближенні окулярного мікрометра до біпризми?
Лабораторна робота № 5.2. Визначення довжини світлової хвилі за допомогою дифракційної решітки
Мета роботи – вивчити явище дифракції у випадку дифракційної решітки; визначити за допомогою дифракційної решітки довжину світлової хвилі.
Вказівки до виконання роботи
Для виконання роботи слід вивчити такий матеріал: дифракція хвиль; дифракція в паралельних променях; дифракційна решітка та її характеристики.
[1, т.3 §§ 4.1–4.5; 2, §§ 176–181; 3, §§ 12.4–12.6; 4, т.2 §§ 125–130]
Дифракцією
називають явища, пов’язані з огинанням
хвилями перешкод, які зустрічаються на
їх шляху, або, в більш широкому розумінні
– явища, пов’язані з будь-яким відхиленням
при розповсюдженні світла від законів
геометричної оптики. Якщо ширина
перешкоди (наприклад, щілина) буде b,
відстань від неї до точки спостереження
–
l,
а довжина хвилі – ,
то параметр
визначає число зон Френеля m,
які відкриває дана перешкода. Отже,
дифракцію можна спостерігати лише тоді,
коли m<<1
(дифракція Фраунгофера) або при m ~ 1
(дифракція Френеля). Якщо m>>1,
то реалізуються закони геометричної
оптики.
Найбільше
практичне значення має дифракція, яку
спостерігають в паралельних променях
(дифракція Фраунгофера) при проходженні
світла через одномірну дифракційну
решітку (рис. 5.2.1).
Дифракційна решітка – це система паралельних щілин рівної ширини, які лежать в одній площині і розділені рівними по ширині непрозорими проміжками. Якщо а – ширина непрозорої частини, а b – ширина прозорої щілини, то сума d = b + a має назву сталої (періоду) дифракційної решітки.
Нехай кількість прозорих щілин решітки на одиниці довжини l буде N (число штрихів), то стала дифракційної решітки знаходиться за співвідношенням:
. (5.2.1)
На дифракційну решітку падає плоска світлова хвиля (рис. 5.2.1). Згідно принципу Гюйгенса – Френеля кожна точка цього фронту є джерелом вторинних сферичних когерентних хвиль. Внаслідок цього усі точки кожної щілини випромінюють сферичні хвилі. Візьмемо, наприклад, точки, що лежать біля країв усіх щілин і розглянемо промені, які випромінюються під кутом до напряму поширення плоскої хвилі. Лінза Л буде збирати усі ці промені у відповідній точці О фокальної площини. Освітленість у цій точці буде результатом інтерференції усіх променів. З рисунку 5.2.1 видно, що між променями 1 та 2 виникає різниця ходу
.
Якщо на цій різниці ходу вкладається ціле число довжин хвиль, то виникає інтерференційний максимум. Таким чином, умовою головних дифракційних максимумів є:
, (5.2.2)
де d − стала решітки; − кут дифракції; m − порядок дифракційного максимуму; − довжина світлової хвилі.
Якщо кути дифракції малі (рис. 5.2.2), то sin tg, тобто:
. (5.2.3)
З виразів (5.2.2) та (5.2.3) випливає, що
, (5.2.4)
де
–
довжина хвилі джерела світла; L –
відстань від решітки до екрана;
lm – відстань
від центрального максимуму до дифракційного
максимуму m-го
порядку; d
– стала дифракційної решітки.
В даній лабораторній роботі джерелом світла є ОКГ (лазер).
С
хему
лабораторної установки зображено на
рисунку 5.2.2. Випромінювання лазера
(ОКГ)
проходить крізь дифракційну решітку
ДР
і створює на екрані Е
картину дифракції.