
- •Пояснительная записка
- •Тематический план
- •Введение
- •Раздел 1. Основы метрологии и электроизмерительные приборы
- •Тема 1.1 Основные понятия
- •Тема 1.2 Меры электрических единиц. Общие сведения об электроизмерительных приборах
- •Вопросы для самопроверки:
- •Раздел 2. Измерительные механизмы приборов непосредственной оценки Тема 2.1 Магнитоэлектрическая и электромагнитная системы
- •Детали и узлы общего применения.
- •Магнитоэлектрические измерительные механизмы.
- •Магнитоэлектрические логометры.
- •Электромагнитный логометр
- •Тема 2.2 Электродинамическая и ферродинамическая системы
- •Электродинамическая система
- •Логометры электродинамической системы
- •Ферродинамическая система.
- •Тема 2.3 Индукционная и другие измерительные системы
- •Индукционная система.
- •Вибрационная система.
- •Выпрямительные (детекторные) приборы.
- •Раздел 3. Измерение электрических величин Тема 3.1 Измерение тока и напряжения
- •Тема 3.2 Расширение пределов измерения
- •Добавочные сопротивления.
- •Измерительные трансформаторы напряжения.
- •Тема 3.3 Измерение сопротивлений
- •Измерение малых и средних сопротивлений методом сравнения с образцовым сопротивлением
- •Измерение средних и больших сопротивлений методом замещения.
- •Измерение средних и малых сопротивлений одинарным мостом
- •Тема 3.4 Измерение активной и реактивной мощности
- •Электродинамический ваттметр в цепи переменного тока
- •Ферродинамический ваттметр
- •Измерение мощности ваттметром с трансформатором тока
- •Измерение мощности ваттметром с трансформаторами тока и напряжения
- •Измерение мощности в трехпроводных цепях при неравномерной нагрузке фаз.
- •Измерение реактивной мощности в трехфазных цепях
- •Тема 3.5 Измерение активной и реактивной энергии
- •Тема 3.5 Измерение активной энергии в трехфазных цепях
- •Измерение реактивной энергии в трехфазных цепях
- •Электродинамический счетчик
- •Тема 3.6 Измерение коэффициента мощности
- •Электродинамические и ферродинамические фазометры
- •Электромагнитный фазометр
- •Фазоуказатель
- •Тема 3.7 Измерение частоты переменного тока
- •Электродинамические и ферродинамические частотомеры
- •Электромагнитный частотомер
- •Выпрямительный частотомер
- •Раздел 4. Измерение неэлектрических величин. Выбор электроизмерительных приборов Тема 4.1 Параметрические и генераторные преобразователи
- •Параметрические преобразователи
- •Реостатные преобразователи
- •Преобразователи контактного сопротивления
- •Тензочувствительные преобразователи
- •Термочувствительные преобразователи
- •Электролитические преобразователи
- •Индуктивные преобразователи
- •Емкостные преобразователи
- •Фотоэлектрические преобразователи
- •Ионизационные преобразователи
- •Генераторные преобразователи
- •Термоэлектрические преобразователи
- •Индукционные преобразователи
- •Пьезоэлектрические преобразователи
- •Тема 4.2 Правила выбора электроизмерительных приборов
- •Лабораторные работы:
- •Литература Основная
- •Дополнительная
- •Контрольные задания введение
- •Программа экзамена
- •Тема 4.2 Правила выбора электроизмерительных приборов 104
Тема 2.3 Индукционная и другие измерительные системы
Студент должен
знать:
-
принцип работы измерительных систем;
-
значение угла поворота стрелки;
-
достоинства и недостатки данных измерительных механизмов;
-
применение в измерениях.
Индукционная измерительная система: устройство, векторная диаграмма, принцип работы, вращающий момент, применение. Электростатическая система: устройство, угол поворота подвижной части, защита от внешних электрических полей, применение. Вибрационная, выпрямительная, термоэлектрическая системы. Особенности работы, достоинства и недостатки, применение.
Материал для изучения
Индукционная система.
Принцип работы приборов индукционной системы основан на действии вращающегося, бегущего или переменного магнитного поля переменного тока (создаваемого одним или несколькими неподвижными электромагнитами) на подвижную часть, представляющую собой чаще всего металлический диск. Укрепленный на одной оси с указательной стрелкой алюминиевый диск помещается между электромагнитами таким образом, что их магнитные потоки, пронизывая диск, индуцируют в нем ЭДС и токи. Взаимодействие между индуцированными токами и переменными потоками электромагнитов вызывает вращение диска.
Индукционные приборы разделяются на однопоточные, вращающий момент которых создается взаимодействием одного потока и тока, и многопоточные, вращающий момент которых создается взаимодействием нескольких (не менее двух) потоков и токов.
|
Рис. 2.3.1. Схема измерительного механизма индукционных приборов: а – однопоточного; б – двухпоточного
|
На рис. 2.3.2 приведены принципиальная схема устройства и векторная диаграмма двухпоточного индукционного прибора с бегущим полем. Укрепленный симметрично на оси 2 алюминиевый диск 3 пронизывается двумя смещенными в пространстве потоками Ф1 и Ф2.
Если переменные токи I1 и I2, протекающие по обмоткам двух катушек 4 и 5, сдвинуты по фазе на угол , то из предположения, что сердечники катушек не насыщены, а потери на гистерезис и вихревые токи в них отсутствуют, следует, что и потоки Ф1 и Ф2 будут сдвинуты по фазе на тот же угол . Потоки Ф1 и Ф2, пронизывая диск, будут индуцировать в нем ЭДС Е1 и Е2, вызывающие в диске токи I'1 и I'2. Электродвижущие силы Е1 и Е2 и совпадающие с ними по фазе токи I'1 и I'2 будут отставать от своих потоков на угол /2.
Результирующий момент слагается из двух моментов: момента М1, возникающего от взаимодействия потока Ф1 с током I'2, и момента М2, создаваемого взаимодействием потока Ф2 с током I'1. Значения моментов, возникающих от взаимодействия между собственными потоками и токами (Ф1 с током I'1 и Ф2 с током I'2), незначительны, а если принять, что диск имеет только активное сопротивление, то они равны нулю (так как угол сдвига между потоком и током, им индуцированным, равен /2). Подвижная часть приборов, обладающая значительной инерцией, не будет реагировать на изменения мгновенных значений вращающего момента в течение каждого периода переменного тока, и отклонение ее вместе со стрелкой 1, а, следовательно, и показания прибора будут зависеть от среднего значения вращающего момента. Как известно, среднее за период значение вращающего момента МВР от взаимодействия переменного потока Ф с индуцированным им в диске током I пропорционально значениям взаимодействующих потока Ф и тока I, а также косинусу угла сдвига по фазе между ними, т.е.
.
Моменты М1 и М2 могут быть определены по следующим формулам:
;
.
На основании данных векторной диаграммы, приведенной на рис. 2.3.2, б, эти равенства могут быть представлены в следующем виде:
;
.
|
Рис. 2.3.2. Двухпоточный прибор индукционной системы: а – принципиальная схема устройства; б – векторная диаграмма
|
Поэтому результирующий
момент, действующий на диск, равен
.
Результирующий момент направлен в
сторону от опережающего по фазе потока
(в данном случае Ф1) к отстающему.
При неизменном сопротивлении диска и
синусоидальном характере изменения
потоков с частотой f токи равны:
;
.
Тогда выражение для результирующего
момента примет следующий вид:
.
Вращающий момент индукционных приборов пропорционален произведению магнитных потоков, пронизывающих контур, синусу угла сдвига между ними и зависит от частоты тока. Из последней формулы следует, что для создания вращающего момента необходимо иметь не менее двух переменных потоков (или двух составляющих одного потока), сдвинутых по фазе и смещенных в пространстве. В случае совпадения потоков по фазе = 0 и sin = 0 вращающий момент равен нулю. Максимальный вращающий момент будет при наибольших значениях магнитных потоков и сдвига фаз между ними в ¼ периода ( = 90 и sin = 1). При ненасыщенных сердечниках потоки Ф1 и Ф2 прямо пропорциональны токам I1 и I2, протекающим по обмоткам катушек 4 и 5 (рис. 2.3.2) и, следовательно, значение результирующего момента равно
МВР = k f I1 I2 sin .
Противодействующий вращению подвижной части момент МПР может быть создан пружиной (при использовании в качестве ваттметра), и в этом случае он будет пропорционален углу закручивания : МПР = DКР . Для момента равновесия МВР = МПР или
k f I1 I2 sin = DКР , откуда угол поворота подвижной части прибора равен
,
т.е. пропорционален произведению токов, проходящих через катушки (либо пронизывающих диск потоков), синусу угла сдвига между ними и зависит от частоты тока.
К числу достоинств индукционных приборов следует отнести большой вращающий момент (до 5 г·см), малое влияние внешних магнитных полей, стойкость к перегрузкам (подвижная часть приборов не требует подвода тока и выполняется весьма прочной), надежность в работе. Изменение температуры окружающей среды вызывает изменение активного сопротивления диска, что в некоторой степени влияет на показания приборов.
В отличие от приборов переменного тока других систем индукционные приборы могут применяться в сетях с одной определенной частотой: на приборах обычно указывается номинальная частота измеряемой величины. Даже небольшое изменение частоты, как в сторону ее увеличения, так и в сторону уменьшения приводит к большим погрешностям измерений. В связи с этим амперметры и вольтметры индукционной системы не получили широкого распространения.
Индукционные измерительные механизмы используются преимущественно в счетчиках электрической энергии для цепей переменного тока промышленной частоты.