
- •Вступ. Фізика як наука. План
- •1. Зародження і розвиток фізики як науки.
- •2. Роль фізичного знання в житті людини й розвитку суспільства.
- •3. Методи наукового пізнання.
- •Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення. Швидкість. Додавання швидкостей. Рівномірний прямолінійний рух.
- •1. Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення.
- •3. Рівномірний прямолінійний рух. Графіки залежності кінематичних величин від часу.
- •Запитання для самоперевірки
- •Прискорення. Рівноприскорений прямолінійний рух. Графіки залежності кінематичних величин від часу. План
- •1. Прискорення. Рівноприскорений прямолінійний рух.
- •Запитання для самоперевірки
- •Рівномірний рух по колу. Період і частота обертання. Лінійна і кутова швидкості. Доцентрове прискорення. План
- •1. Рівномірний рух по колу. Період і частота обертання. Лінійна і кутова швидкості.
- •2. Доцентрове прискорення.
- •Запитання для самоперевірки
- •Перший закон Ньютона. Інерціальні системи відліку. Принцип відносності Галілея. План
- •1. Інерція та інертність.
- •2. Інерціальні системи відліку. Принцип відносності Галілея.
- •3. Перший закон Ньютона.
- •Запитання для самоперевірки
- •Маса. Сила. Додавання сил. Другий закон Ньютона. Третій закон Ньютона. План
- •1. Маса.
- •2. Сила. Додавання сил.
- •3. Другий закон Ньютона.
- •4. Третій закон Ньютона.
- •Запитання для самоперевірки
- •Гравітаційні сили. Закон всесвітнього тяжіння. Сила тяжіння. Рух під дією сили тяжіння. План
- •1. Гравітаційні сили. Закон всесвітнього тяжіння.
- •2. Сила тяжіння. Рух під дією сили тяжіння.
- •Запитання до самоперевірки
- •Вага тіла. Невагомість. Рух штучних супутників Землі. Перша космічна швидкість. План
- •1. Вага тіла.
- •2. Невагомість.
- •3. Рух штучних супутників Землі. Перша космічна швидкість.
- •Запитання для самоперевірки
- •Сила пружності. Закон Гука. Сила тертя. Коефіцієнт тертя. План
- •1. Сила пружності. Закон Гука.
- •2. Сила тертя. Коефіцієнт тертя.
- •Запитання для самоперевірки
- •Момент сили. Умови рівноваги тіла. Важель. План
- •1. Статика. Умови рівноваги тіла.
- •2. Момент сили.
- •Запитання до самоперевірки
- •Імпульс (кількість руху) тіла. Закон збереження імпульсу. Реактивний Рух. План
- •1. Імпульс (кількість руху) тіла. Закон збереження імпульсу.
- •2. Реактивний Рух.
- •Запитання для самоперевірки
- •Механічна робота. Потужність. Кінетична і потенціальна енергія. Закон збереження енергії в механіці. Коефіцієнт корисної дії простих механізмів. План
- •1. Механічна робота. 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
- •2. Потужність.
- •3. Механічна енергія. Закон збереження енергії в механіці. Коефіцієнт корисної дії простих механізмів.
- •Запитання для самоперевірки
- •Основні положення молекулярно-кінетичної теорії та її дослідне обґрунтування. Маса та розмір молекул. Стала Авогадро. План
- •1. Основні положення молекулярно-кінетичної теорії та її дослідне обґрунтування.
- •2. Маса та розмір молекул. Стала Авогадро.
- •Запитання для самоперевірки
- •1. Взаємодія атомів і молекул у газах, рідинах і твердих тілах.
- •2. Температура та її вимірювання. Абсолютна температурна шкала. Закон Дальтона.
- •3. Швидкість молекул газу. Дослід Штерна.
- •Запитання для самоперевірки
- •Ідеальний газ. Основне рівняння молекулярно-кінетичної теорії ідеального газу. План
- •1. Ідеальний газ.
- •2. Основне рівняння молекулярно-кінетичної теорії ідеального газу.
- •Запитання для самоперевірки
- •Рівняння стану ідеального газу (рівняння Клапейрона - Менделєєва). Ізопроцеси в газах. План
- •1. Рівняння стану ідеального газу.
- •2. Ізопроцеси в газах.
- •Запитання для самоперевірки
- •Пароутворення (випаровування та кипіння). Конденсація. Питома теплота пароутворення. Насичена і ненасичена пара, їх властивості. План
- •1. Пароутворення (випаровування та кипіння). Конденсація.
- •2. Питома теплота пароутворення.
- •3. Насичена і ненасичена пара, їх властивості.
- •Запитання для самоперевірки
- •Вологість повітря та її вимірювання. План
- •1. Вологість повітря.
- •2. Точка роси. Вимірювання вологості повітря.
- •Запитання для самоперевірки
- •Поверхневий натяг рідин. Сила поверхневого натягу. Змочування. Капілярні явища. План
- •1. Поверхневий натяг рідин. Сила поверхневого натягу.
- •2. Змочування.
- •3. Капілярні явища.
- •Запитання для самоперевірки
- •Кристалічні та аморфні тіла. Механічні властивості твердих тіл. Види деформацій. Модуль Юнга. План
- •Запитання для самоперевірки
- •1. Плавлення і тверднення тіл. Питома теплота плавлення.
- •2. Згоряння. Питома теплота згоряння палива.
- •3. Рівняння теплового балансу.
- •Запитання для самоперевірки
- •Теплове розширення тіл. План
- •1. Теплове розширення твердих тіл, рідин і газів
- •2. Причини теплового розширення.
- •3. Характеризуємо теплове розширення твердих тіл.
- •4. Теплове розширення у природі й техніці.
- •Тепловий рух. Внутрішня енергія тіла і способи її зміни. Кількість теплоти. Питома теплоємність речовини. Робота в термодинаміці. План
- •1. Внутрішня енергія тіла і способи її зміни.
- •2. Кількість теплоти. Питома теплоємність речовини.
- •3. Робота в термодинаміці.
- •Запитання для самоперевірки
- •Закон збереження енергії в теплових процесах (перший закон термодинаміки). Застосування першого закону термодинаміки до ізопроцесів. Адіабатний процес. План
- •1. Закон збереження енергії в теплових процесах (перший закон термодинаміки).
- •2. Застосування першого закону термодинаміки до ізопроцесів. Адіабатний процес.
- •1. Необоротність теплових процесів.
- •2. Принцип дії теплових двигунів. Цикл Карно.
- •3. Коефіцієнт корисної дії теплового двигуна і його максимальне значення.
- •4. Теплові двигуни і проблеми охорони навколишнього середовища.
- •Запитання для самоперевірки
4. Теплове розширення у природі й техніці.
Здатність тіл розширюватися під час нагрівання і стискуватися під час охолодження відіграє дуже важливу роль у природі. Поверхня Землі прогрівається нерівномірно. У результаті повітря поблизу Землі також розширюється нерівномірно, й утворюється вітер, що зумовлює зміну погоди. Нерівномірне прогрівання води в морях і океанах приводить до виникнення течій, які суттєво впливають на клімат. Різке коливання температури в гірських районах викликає розширення і стискання гірських порід. А оскільки ступінь розширення залежить від виду поро¬ди, то розширення і стискання відбуваються нерівномірно, і в результаті утворюються тріщини, що спричинюють руйнування тих порід. Теплове розширення доводиться брати до уваги під час будівництва мостів і ліній електропередач, прокладання труб опалення, укладання залізничних рейок, виготовлення залізобетонних конструкцій і в багатьох інших випадках.
Явище теплового розширення широко використовується в техніці й побуті. Так, для автоматичного замикання й розмикання електричних кіл використовують біметалічні пластинки — вони складаються з двох смуг із різним коефіцієнтом лінійного розширення (рис. 2.33). Теплове розширення повітря допомагає рівномірно прогріти квартиру, остудити продукти в холодильнику, провітрити кімнату.
Для виготовлення автоматичних запобіжників (а), для автоматичного ввімкнення і вимкнення нагрівальних приладів (б) широко застосовуються біметалічні пластинки (в). Один із металів у разі збільшення температури розширюється набагато більше за другий. У результаті ця пластинка вигинається (г), й електричне коло розмикається (або замикається).
Тверді тіла, рідини й гази під час нагрівання, як правило, розширюються. Причина теплового розширення в тому, що зі збільшенням температури збільшується швидкість руху атомів і молекул. У результаті збільшується середня відстань між атомами (молекулами). Теплове розширення твердих речовин характеризується коефіцієнтом лінійного розширення. Коефіцієнт лінійного розширення чисельно дорівнює відношенню зміни довжини тіла внаслідок нагрівання його на 1 °С і його початкової довжини.
Рис. 2.33.
|
Запитання для самоперевірки 1. Наведіть приклади, які підтверджують, що тверді тіла, рідини й гази розширюються під час нагрівання. 2. Опишіть дослід,який демонструє теплове розширення рідин. 3. У чому причина збільшення об'єму тіл під час нагрівання? 4. Від чого, крім температури, залежить зміна розмірів тіл під час їх нагрівання (охолодження)? 5. У яких одиницях вимірюється коефіцієнт лінійного розширення? 6. Як зміниться об'єм повітряної кульки, якщо ми перенесемо її з хо лодного приміщення в тепле? Чому? 7. Що відбувається з відстанню між частинками рідини в термометрі в разі похолодання? 8. Чи правильним є твердження, що під час нагрівання тіло збільшує свої розміри, тому що розміри його молекул збільшуються? Якщо ні, запропонуйте свій, виправлений, варіант. 9. Навіщо на точних вимірювальних приладах зазначають температуру? 10. Згадайте дослід із мідною кулькою, яка внаслідок нагрівання застрягала в кільці (див. рис. 2.32). Як змінилися внаслідок нагрівання: об'єм кулі; її маса; густина; середня швидкість руху атомів? 11. Після того як пару киплячої води пропустили через латунну трубку, довжина трубки збільшилася на 1,62 мм. Чому дорівнює коефіцієнт лінійного розширення латуні, якщо за температури 15 °С довжина трубки дорівнює 1 м? Нагадуємо, що температура киплячої води дорівнює 100 °С. 12. Платиновий дріт завдовжки 1,5 м мав температуру 0 °С. Унаслідок пропускання електричного струму він розжарився й подовжився на 15 мм. До якої температури був нагрітий дріт? 13. Мідний лист прямокутної форми, розміри якого за температури 20 °С становлять 60 см х 50 см, нагріли до 600 °С. Як змінилася площа листа? |