- •Введение к учебнику «Производство гидротехнических работ»
- •4.1. Общие положения по выбору типа транспорта
- •4.2. Автомобильный транспорт
- •4.3. Другие виды транспорта
- •Конвейерный транспорт, конвейерные поезда
- •Трубопроводный контейнерный пневмотранспорт. Подвесные канатные дороги
- •4.4. Строительные дороги
- •10.1. Общие положения
- •10.2. Плотины с противофильтрационными элементами из асфальтобетона
- •10.3. Плотины с железобетонными экранами
- •10.4. Плотины с металлическими противофильтрационными элементами
- •10.5. Плотины с противофильтрационными элементами из геосинтетических материалов
- •10.6. Плотины на вечно мерзлом основании с мерзлотными противофильтрационными завесами
- •10.7. Плотины с завесами возводимыми методом струйной цементации
- •13.1. Общая классификация бетонов
- •ГЛАВА 25. Совершенствование технологии бетонных работ при возведении высоких бетонных плотин.
- •25.1. Особенности возведения высоких бетонных плотин и совершенствование технологий их бетонирования
- •25.2 Добавки для бетонов и их эффективность
- •25.3 Применение литых бетонов в гидротехническом строительстве
- •Тенденции совершенствования технологии строительства бетонных плотин из укатанного бетона
- •Дополнительная литература по Главе 10
- •Дополнительная литература по Главе 24
- •В параграфе 7.6 «Производительность экскаваторов» дан общий подход к определению оптимальных параметров забоев экскаваторов различных типов.
- •Объем захваченного ковшом грунта
Рис. 10.5.8. Плотина Кодоль (Франция):
а — поперечное сечение плотины; б — деталь экрана с геомембраной; 1 — каменная наброска О—1000 мм; 2 — галерея; 3 — двухметровый слой укатанного песка и гравия, 25—120 мм; 4 — пятнадцатисантиметровый слой гравия, 25—50 мм; 5 — пятисантиметровый слой холодной смеси, 6—12 мм; 6 — геотекстиль, подстилающий геомембрану, 400 г/м²; 7 — геомембрана из поливинилхлорида, 2 мм; 8 — геотекстиль, 400 г/м²; 9 — бетонные плиты 4,5X5 м, толщиной 14 см; 10 — шов
10.6. Плотины на вечно мерзлом основании с мерзлотными противофильтрационными завесами
При строительстве в северной климатической зоне с вечно-мерзлотными основаниями применяется два принципа строительства плотин (и других сооружений) основаниях – с сохранением мерзлого состояния грунтов в процессе строительства и эксплуатации сооружения или в оттаянном состоянии. При этом, различают плотины мерзлого типа и плотины комбинированного типа.
Плотина мерзлого типа - плотина, противофильтрационный элемент которой и его основание находятся в мерзлом состоянии, обеспечивая ее водонепроницаемость в течение всего периода эксплуатации.
Плотина талого типа - плотина, противофильтрационный элемент которой находится в талом или в частично мерзлом состоянии в течение всего периода эксплуатации.
Плотина комбинированного типа - плотина, в различных частях тела и основания которой в процессе эксплуатации обеспечивается заданное сочетание фрагментов плотин мерзлого и талого типа, например, талого типа - в русловой части плотины на подрусловой таликовои зоне и мерзлого типа - на береговых многолетнемерзлых грунтах.
Плотины мерзлого типа принципиально включают те же элементы, что и обычные плотины с грунтовыми противофильтрационными элементами, но вместо талого грунтового ядра применяется промороженное грунтовое ядро, с поддержанием ею в промороженном состоянии в течение всего периода эксплуатации. Такой противофильтрационный элемент создается замораживанием влаги, содержащейся в грунте до его твердомерзлого состояния. Целесообразность такого решения возникает в случае наличия в бортах и основании зон вечной мерзлоты и отсутствии в районе строительства необходимых качественных материалов для устройства обычных грунтовых противофильтрационных устройств по талому варианту. Распространению таких решений способствует стремление использовать природный холод в северной строительной зоне. Для создания таких завес применяются специальные устройства и технология, обеспечивающие их строительство и эксплуатацию в нужном температурном режиме.
Для активного управления температурным режимом грунтов в системе «плотина-основание» применяются специальные сезонно-действующие охлаждающие устройства (СОУ) различного типа.
В гидротехническом строительстве нашли применение следующие четыре типа СОУ:
201
∙Воздушные с вынужденной конвекцией (циркуляцией) воздуха (ВВК СОУ);
∙Жидкостные с естественной конвекцией хладоносителя-керосина (ЖЕК СОУ);
∙Жидкостные с вынужденной конвекцией хладоносителя (ЖВК СОУ);
∙Парожидкостные или двухфазные (ПЖ СОУ).
Указанные типы устройств отличаются друг от друга различными способами создания и поддержания отрицательных температур в грунте.
Воздушные установки с вынужденной конвекцией (ВВК СОУ) представляют собой теплообменник типа «труба в трубе». ВВК СОУ (рис.10.6.1.) представляет собой теплообменник типа «труба в трубе». Наружный воздух вентилятором подается во внутреннюю трубу (или отсасывается из кольцевого зазора). При движении по кольцевому зазору воздух воспринимает тепло грунта и нагревается, частично нагревая и поток холодного воздуха во внутренней трубе. Обычно один вентилятор обслуживает группу колонок, поэтому системы ВВК СОУ оборудуются и наружными воздуховодами-коллекторами.
Рис.10.6.1. Схема ВВК СОУ
Жидкостные установки с естественной конвекцией (ЖЕК СОУ) в простейшем случае представляют собой частично заглубленную в грунт трубу, заполненную незамерзающей жидкостью (керосин и т.п.). В нижней части керосин, воспринимая тепло от грунта, расширяется и поднимается кверху, а в выступающей части, наоборот охлаждается наружным воздухом, тяжелеет и опускается вниз. Имеются различные варианты таких устройств (рис. 10.6.2).
202
Рис. 10.6.2. Схемы конструкции ЖЕК СОУ: а – однотрубная установка С.И. Гапаева; б – коаксиальная установка фирмы Thermodynamics, США; в – установка с выносным наружным термообменником В.И. Макарова
Жидкостные установки с вынужденной конвекцией (ЖВК СОУ) по конструкции принципиально не отличается от ВВК, но могут иметь меньшие диаметры, так как жидкость имеет гораздо большую плотность по сравнению с воздухом (Рис.10.6.3). В отличии от ВВК, ЖВК обязательно должны иметь наружный теплообменник, циркулируя жидкости между теплообменниками грунтовым и наружным осуществляется насосом. На практике ЖВК так же, как и ВВК, объединяются в группы с одним насосом и единым наружным теплообменником типа калорифера. Наружный воздух через калорифер продувается специальным вентилятором, хотя возможно и просто обдувание ветром. В качестве рабочей жидкости до сих пор применяют керосин.
203
Рис.10.6.3. Схема ЖВК СОУ: 1 – калорифер; 2 – вентилятор; 3 – расширительная емкость; 4 – насос; 5 – подающий коллектор; 6 – замораживающая колонка; 7 – отводящий коллектор
Парожидкостные установки (ПЖ СОУ) представляют собой герметично закрытую трубу, заполненную рабочим веществом (холодильным агентом) (Рис.10.6.4.). Рабочее вещество в установке находится в двухфазном состоянии: в виде пара, заполняющего центральную часть трубы и жидкости, пленкой покрывающей ее стенки. Трубу погружают в грунт на большую часть длинны – это грунтовый теплообменник (испаритель), а выступающая часть – наружный теплообменник (конденсатор). Зимой пары рабочего вещества в верхней части установки охлаждаются воздухом и конденсируются, конденсат пленкой стекает по стенкам трубы вниз. Здесь жидкая пленка воспринимает тепло из грунта и испаряется. Образовавшийся пар поднимается вверх, и цикл повторяется.
204
Рис.10.6.4. Схема парожидкостного СОУ с естественной конвекцией хладоносителя: 1 – наружный теплообменник (конденсатор); 2 – грунтовой теплообменник (испаритель); 3 – пленка стекающей жидкости; 4 – пар; 5 – резерв жидкости
Все СОУ работают только в зимний сезон, используя относительно низкие температуры воздуха. В отличие от искусственного замораживания грунта в тоннелестроении и т.п., которое, как правило, является временным (только на период строительства), охлаждающие системы, скомплектованные из СОУ способны поддерживать достигнутое мерзлое состояние в течении многих лет. Причем либо вообще без затрат энергии – (ПЖ) и (ЖЕК), либо с затратами энергии только на перекачку хладоносителя.
Первая земляная плотина с искусственно замороженным ядром в России с системой ВВК была построена в 1941-1921гг. на ручье Долгом в районе Норильска. В дальнейшем были построены плотины на реке Ириля (1964г.), Павск (1967г.), Сытыкан (1976г.). Жидкостные СОУ были применены в плотине на р. Марха. В плотине водохранилища Анадырской ТЭЦ (1986г.) применена система парожидкостных СОУ (рис. 10.6.5.).
Как показал опыт эксплуатации, перечисленные типы СОУ различаются не только по физическим показателям эффективности теплообмена и энергетическим затратам, но и по ряду эксплуатационных характеристик. Многие выявленные недостатки различных систем были часто следствием недостаточного качества проектных и строительно-монтажных работ, поэтому качеству этих работ при применении СОУ должно быть уделено особое внимание. Совершенствование систем СОУ продолжается в направлении конструктивно-технологических решений и повышения эксплуатационных качеств.
Наибольшие трудности вызывает эксплуатация наиболее простых воздушных СОУ. Это, вопервых, связано с физическими свойствами воздуха, который, как и любой газ, имеет малую теплоемкость и поэтому плох как хладоноситель: он быстро нагревается при движении по колонке и, следовательно, слабо охлаждает грунт, особенно в нижних и средних слоях. Во вторых, в воздушных колонках образуются ледяные пробки, которые уменьшают сечение, а в худшем случае могут полностью закупорить колонку.
205
Более эффективными по теплообмену, беззатратными по электроэнергии, более дешевыми в эксплуатации, по сравнению с воздушными, являются жидкостные СОУ с естественной конвекцией (ЖЕК).
Расчетные и натурные исследования показали, что при одинаковых площадях поверхности грунтового и наружного теплообменников и одинаковой скорости воздуха (или ветра) у поверхности наружного теплообменника тепловая эффективность ПЖ и ЖВК СОУ примерно одинаковы, а эффективность ЖЕК СОУ на 30-40% ниже. Эти три типа СОУ и являются наиболее перспективными для охлаждающих систем умеренной глубины Н = 10-30м.
Воздушные СОУ при глубине > 12-15м охлаждают грунт значительно хуже и, кроме того, обладают существенным эксплуатационным недостатком – забиваются ледяными пробками. Технических средств для его преодоления пока не существует.
Для всех трех типов СОУ следует добиваться, чтобы как можно большее число элементов системы (в частности, теплообменники) изготавливались и испытывались в заводских условиях.
Последовательность возведения плотины и завесы может осуществляться по двум схемам. Первая схема – возведение завесы с гребня предусматривает следующую последовательность:
∙возведение плотины на полную высоту;
∙бурение скважин с гребня с заглублением их в основание;
∙установка в скважины соответствующих СОУ;
∙включение в работу СОУ и создание противофильтрационной завесы в строительный период до наполнения водохранилища;
∙поддержание необходимого температурного режима завесы в период эксплуатации для
обеспечения ее работы в качестве противофильтрационного элемента.
Вторая схема – возведение завесы в процессе возведения плотины. Эта схема предусматривает послойное возведение плотины с соответствующим неслойным намораживанием грунта. Соответствующая схема показана на рис. 10.6.5
Рис. 10.6.5. Схема создания льдогрунтового ядра плотины с послойным намораживанием грунта
(Г.Ф. Биянов)
а - подготовка основания и установка первого звена труб системы замораживания: б - отсыпка первого слоя упорных призм и устройство бокового уплотнения I; в - отсыпка грунта в ядро, полив водой и промораживание; г- последовательная отсыпка слоями, полив водой, промораживание и наращивание труб системы замораживания; д - плотина с льдогрунтовым ядром; 1 - основание; 2 - замораживающая колонка; 3 - упорные призмы; 4 - буферные слои; 5 - два слоя полиамидной пленки; 6 - выравнивающий слой из карьерной мелочи 7 - льдогрунтовое ядро
Вторая технология имеет следующие преимущества: значительно сокращается объем работ по бурению скважин, исключается необходимость применения обсадных труб с
206
выполнением трудоемких работ по их извлечению, исключаются работы по заполнению раствором затрубного пространства, повышается качество монтажа замораживающих колонок и, самое главное, ускоряется ввод в эксплуатацию системы замораживания. Промораживание грунтов ядра и его основания возможно параллельно с возведением плотины. Главным ее недостатком является возможность повреждения колонок в период строительства.
При наличии в основании замкнутого или руслового талика необходимо обеспечить промораживание этого талика. Для средних высоконапорных плотин и при галичии в основании замкнутого или сквозного талика с водоупором на глубине до 30-40м., может быть осуществлено конструктивно-технологическое решение с двухярусной комбинированной замораживающей системой (рис. 10.6.6)
Система включает в себя: верхний ярус замораживающих колонок, установленных в ядре и выведенных на гребень плотины, двухъярусную охлаждающую потерну, расположенную в зоне сопряжения ядра с его основанием, и нижний ярус замораживающих колонок, заглубленных в основание на участке руслового талика на глубину, перекрывающую талик или до водоупора, а на береговых участках створа на глубину, обеспечивающую сохранение грунтов в мерзлом состоянии» определяемую расчетом. Замораживающие колонки верхнего и нижнего ярусов работают автономно. Опережающее замораживание основания позволяет переморозить лодрусловой талик в. строительный период.
а) продольный разрез 1 - граница замкнутого талика; 2 - воздушное СОУ нижнего яруса; 3 - потерна; 4
-вертикальные колодцы верхнего яруса; 5 - вентиляционные шахты; 6 - канал; 7 -съемные крышки канала; 8 - отводящий (воздух) колодец; 9 - струенаправляющая вставка.
207