
- •А.И. Киеня, э.М. Заика, в.А. Мельник, н.И. Штаненко, физиология человека
- •Часть II
- •Предисловие
- •Лекция № 1 Тема лекции: Обмен веществ План лекции: Сущность обмена веществ в организме
- •Особенно велика потребность в белке в периоды роста, беременности, выздоровления после тяжелых заболеваний.
- •Азотистый баланс
- •Коэффициент изнашивания Рубнера
- •Обмен жиров
- •Функции липидов:
- •Гидролиз жиров
- •Регуляция обмена жиров Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами.
- •Обмен углеводов
- •3.Функция запаса питательных веществ.
- •Гипогликемия
- •Гипергликемия
- •Контринсулярные гормоны. При снижении уровня глюкозы в крови глюкагон, адреналин, соматотропин и кортизол «тормозят» захват глюкозы клетками, стимулируют превращение гликогена в глюкозу.
- •Определение энергозатрат организма
- •Прямая калориметрия
- •Непрямая калориметрия
- •Полный газовый анализ.
- •Для углеводов:
- •Для жиров:
- •Основной обмен
- •Факторы, определяющие величину основного обмена.
- •Методы определения основного обмена
- •Регуляция обмена энергии
- •Расход энергии при физической нагрузке. Общий расход энергии человеком зависит от состояния организма и мышечной деятельности.
- •I. Значение постоянства температуры внутренней среды организма
- •От процессов теплообразования и теплоотдачи;
- •От факторов внешней среды;
- •Поведенческой активности.
- •Терморегуляция
- •Теплопродукция
- •Физическая терморегуляция Теплоотдача
- •Теплоизлучение
- •Теплопроводимость
- •Регуляция изотермии (нервная и гуморальная)
- •Гипотермия и гипертермия
- •Лихорадка
- •Физиология возбудимых тканей Лекция 1
- •Мембранно-ионная теория происхождения потенциала покоя (мембранного потенциала мп)
- •Мембранный потенциал действия (мпд)
- •Механизм возникновения пд.
- •Изменения возбудимости в процессе возбуждения.
- •Законы раздражения и оценка возбудимости.
- •Лабильность.
- •Физиология нервного волокна.
- •Законы проведения возбуждения.
- •Механизмы возникновения и проведения возбуждения в миелиновых и безмиелиновых волокнах.
- •Типы нервных волокон.
- •Явление парабиоза.
- •Физиология возбудимых тканей Лекция 2 синапсы.
- •Строение синапса.
- •Классификация синапсов
- •Принципы и особенности передачи возбуждения в межнейральных синапсах.
- •Восприятие раздражения из вне (рецепция).
- •Преобразование энергии раздражителя.
- •Физиология мышц.
- •Режимы сокращения мышц.
- •Сила и работа мышечного волокна.
- •Двигательные единицы.
- •Физиология возбудимых тканей Лекция 3 Композиция (состав мышц).
- •Структура мышечного волокна.
- •Теория сокращения мышц (скольжение нитей).
- •Утомление мышц.
- •Гипертрофия и атрофия мышц.
- •Гладкие мышцы.
- •Общая физиология центральной нервной системы
- •Рефлекторная деятельность нервной системы
- •Основные принципы распространения возбуждения в нц
- •Торможение в цнс
- •Координация рефлексов
- •Доминанта
- •Частная физиология цнс.
- •Спинной мозг.
- •Задний мозг.
- •Частная физиология нервной системы Лекция 2 мозжечок
- •Ретикулярная формация ствола мозга.
- •Промежуточный мозг.
- •Таламус.
- •Гипоталамус.
- •Лимбическая система мозга. Лимбическая система.
- •Передний мозг.
- •Базальные ганглии.
- •Кора головного мозга
- •Связь периферических образований с корой.
- •Функциональная асимметрия мозга.
- •Вегетативная (автономная) нервная система.
- •Классификация вегетативных ганглиев.
- •Вегетативные рефлексы.
- •Уровни регуляции вегетативных функций.
- •Физиология анализаторов общие принципы строения сенсорных систем
- •Основные функции сенсорной системы
- •Адаптация сенсорной системы
- •Частная физиология сенсорных систем зрительная система
- •Слуховая система
- •Структура и функции наружного и среднего уха.
- •Теории восприятия звука.
- •Электрические явления в улитке.
- •Проводящие пути слухового анализатора.
- •Вестибулярная система
- •Комплексные рефлексы, связанные с вестибулярной стимуляцией.
- •Соматосенсорная система
- •Кожная рецепция.
- •Мышечная и суставная рецепция (проприорецепция).
- •Обонятельная система
- •Вкусовая система
- •Физиология желез внутренней секреции
- •Методы исследования деятельности желез внуренней секреции
- •Внутренняя секреция гипофиза
- •Передняя доля гипофиза
- •Соматотропный гормон
- •Гонадотропные гормоны (гонадотропины)
- •Промежуточная доля гипофиза
- •Задняя доля гипофиза
- •Регуляция внутренней секреции гипофиза
- •Внутренняя секреция щитовидной железы
- •Гормоны щитовидной железы
- •Внутренняя секреция околощитовидных желез
- •Внутренняя секреция поджелудочной железы
- •Гормоны поджелудочной железы
- •Регуляция внутренней секреции поджелудочной железы.
- •Внутренняя секреция эпифиза
- •Тканевые гормоны
- •Внутренняя секреция надпочечников
- •Физиологическое значение адреналина и норадреналина
- •Кора надпочечников
- •Гормоны коры надпочечников
- •Факторы, влияющие на интенсивность образования глюкокортикоидов.
- •Внутренняя секреция половых желез
- •Регуляция деятельности половых желез
- •Гормоны плаценты
- •Биологические основы поведения.
- •Высшая нервная деятельность.
- •Классификация условных рефлексов.
- •Механизмы образования условных рефлексов.
- •Торможение условных рефлексов.
- •Анализ и синтез раздражителей в кбп. Динамический стереотип.
- •Высшая нервная деятельность.
- •Как формируется вторая сигнальная система?
- •Типы внд.
- •Нарушения внд.
Гипертрофия и атрофия мышц.
Гипертрофия мышцы – это увеличение массы мышечной ткани при систематической интенсивной работе. Выделяют два вида гипертрофии:
1. Миофибриллярный тип. Развивается при статической работе (поднятие тяжести). При этом типе гипертрофии увеличивается число миофибрилл и значительно увеличивается сила мышцы. Например, тяжелоатлеты.
2. Саркоплазматический тип – увеличение объема саркоплазмы (гликогена, креатининфосфата, миоглобина, числа капилляров). При этом типе гипертрофии развивается выносливость. Например, бегуны на длинной дистанции.
Атрофия мышцы развивается при ее бездеятельности. Атрофия способствует постельный режим, перерезка сухожилий, заболевания нервной системы, гипсовая повязка.
Гладкие мышцы.
Гладкие мышцы встречаются в стенках кровеносных сосудах, коже и внутренних органах.
От поперечнополосатой мышечной ткани гладкие мышцы отличаются тем, что у них не упорядочены актиновые и миозиновые миофибриллы. Соединение гладких мышц представляют собой тесные контакты между мембранами на большом расстоянии, которые называются нексусами. Таким образом, они образуют сеть, которая действует как единое целое.
Гладкие мышцы обеспечивают медленные движения и длительные тонические сокращения. Например, маятникообразные и перистальтические сокращения кишечника. Гладкие мышцы обеспечивают тонус артерий и артериол.
По функциональному значению делятся на два типа:
1. Висцеральные (внутренние). Располагаются в ЖКТ и мочевыделительной системе.
2. Унитарные. Состоят из единиц, называемых унитами, которые содержат большое число мышечных клеток. Унитарные гладкие мышцы встречаются в стенках кровеносных сосудах, в зрачке, хрусталике и коже.
Деятельность гладких мышц находится под влиянием симпатического и парасимпатического отделов ВНС.
Висцеральная гладкая мускулатура способна сокращаться без прямых нервных влияний. Постоянный мембранный потенциал покоя в гладких мышцах отсутствует, он постоянно дрейфует и в среднем составляет -50мВ. Дрейф происходит спонтанно, без каких-либо влияний и когда мембранный потенциал покоя достигает критического уровня возникает потенциал действия, который и вызывает сокращение мышцы. Продолжительность потенциала действия достигает нескольких секунд, поэтому и сокращение тоже может длиться несколько секунд. Возникшее возбуждение затем распространяется через нексус на соседние участки вызывая их сокращения.
Скорость проведения возбуждения по нервным волокнам к гладким мышцам составляет 3-5 см в секунду.
Спонтанная (независимая) активность связана с растяжением гладкомышечных клеток и когда они растягиваются возникает потенциал действия. Частота возникновения потенциалов действия зависит от степени растяжения волокна. Например, перистальтические сокращения кишечника усиливаются при растягивании его стенок химусом.
Унитарные мышцы в основном сокращаются под влиянием нервных импульсов, но иногда возможны и спонтанные сокращения. Одиночный нервный импульс не способен вызывать ответной реакции. Для ее возникновение необходимо суммировать несколько импульсов.
Для всех гладких мышц при генерации возбуждения характерна активация кальциевых каналов, поэтому в гладких мышцах все процессы идут медленнее по сравнению со скелетной.
Гуморальная регуляция сокращения гладких мышц. На силу сокращения гладких мышц оказывает влияние адреналин, который вызывает длительное сокращение. Гладкие мышцы способны реагировать на действие биологических веществ находящихся в крови. В отличии от них скелетные мышцы отвечают на действие веществ только через синапс.
Гладкие мышцы потребляют мало энергии и обладают свойством пластичности. Пластичность это способность мышцы сохранять приданную длину без изменения напряжения. Данное свойство очень важно для функционирования мочевого пузыря.
Действие биологически активных веществ на гладкие мышцы находящиеся в различных органах не однозначно. Так, ацетилхолин возбуждает гладкие мышцы, которые находятся во внутренних органах, но тормозит в сосудах; адреналин способен расслаблять небеременную матку, но вызывает сокращение беременной.